【题目】已知
,
,且
对
恒成立,则
的最大值是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】分析:先求出函数的导数,再分别讨论a=0,a<0,a>0的情况,从而得出ab的最大值.
详解:令f(x)=ex-a(x-1)-b,则f′(x)=ex-a,
若a=0,则f(x)=ex-b≥-b≥0,得b≤0,此时ab=0;
若a<0,则f′(x)>0,函数单调增,x→-∞,此时f(x)→-∞,不可能恒有f(x)≥0.
若a>0,由f′(x)=ex-a=0,得极小值点x=lna,
由f(lna)=a-alna+a-b≥0,得b≤a(2-lna),ab≤a2(2-lna).令g(a)=a2(2-lna).则g′(a)=2a(2-lna)-a=a(3-2lna)=0,得极大值点a=
.而g(
)=
∴ab的最大值是
故选C
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E:
(a>b>0)的离心率为
,F是椭圆E的右焦点,直线AF的斜率为
,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足:只要
,必有
,则称
具有性质
.
(1)若
具有性质
,且
,
,求
;
(2)若无穷数列
是等差数列,无穷数列
是公比为正数的等比数列,
,
,
判断
是否具有性质
,并说明理由;
(3)设
是无穷数列,已知
.求证:“对任意
都具有性质
”的充要条件为“
是常数列”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】唐诗是中国文学的瑰宝.为了研究计算机上唐诗分类工作中检索关键字的选取,某研究人员将唐诗分成7大类别,并从《全唐诗》48900多篇唐诗中随机抽取了500篇,统计了每个类别及各类别包含“花”、“山”、“帘”字的篇数,得到下表:
爱情婚姻 | 咏史怀古 | 边塞战争 | 山水田园 | 交游送别 | 羁旅思乡 | 其他 | 总计 | |
篇数 | 100 | 64 | 55 | 99 | 91 | 73 | 18 | 500 |
含“山”字的篇数 | 51 | 48 | 21 | 69 | 48 | 30 | 4 | 271 |
含“帘”字的篇数 | 21 | 2 | 0 | 0 | 7 | 3 | 5 | 38 |
含“花”字的篇数 | 60 | 6 | 14 | 17 | 32 | 28 | 3 | 160 |
(1)根据上表判断,若从《全唐诗》含“山”字的唐诗中随机抽取一篇,则它属于哪个类别的可能性最大,属于哪个类别的可能性最小,并分别估计该唐诗属于这两个类别的概率;
(2)已知检索关键字的选取规则为:
①若有超过95%的把握判断“某字”与“某类别”有关系,则“某字”为“某类别”的关键字;
②若“某字”被选为“某类别”关键字,则由其对应列联表得到的
的观测值越大,排名就越靠前;
设“山”“帘”“花”和“爱情婚姻”对应的
观测值分别为
,
,
.已知
,
,请完成下面列联表,并从上述三个字中选出“爱情婚姻”类别的关键字并排名.
属于“爱情婚姻”类 | 不属于“爱情婚姻”类 | 总计 | |
含“花”字的篇数 | |||
不含“花”的篇数 | |||
总计 |
附:
,其中
.
| 0.05 | 0.025 | 0.010 |
| 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信运动”是手机
推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:
运动达人 | 参与者 | 合计 | |
男教师 | 60 | 20 | 80 |
女教师 | 40 | 20 | 60 |
合计 | 100 | 40 | 140 |
(Ⅰ)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?
(Ⅱ)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为
,写出
的分布列并求出数学期望
.
参考公式:
,其中
.
参考数据:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
上点
处的切线方程为
.
(Ⅰ)求抛物线的方程;
(Ⅱ)设
和
为抛物线上的两个动点,其中
且
,线段
的垂直平分线
与
轴交于点
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
交于
、
两点,试问,是否存在
轴上的点
,使得对任意的
,
为定值,若存在,求出
点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机企业为确定下一年度投入某种产品的研发费用,统计了近
年投入的年研发费用
千万元与年销售量
千万件的数据,得到散点图1,对数据作出如下处理:令
,
,得到相关统计量的值如图2:
![]()
(1)利用散点图判断
和![]()
哪一个更适合作为年研发费用
和年销售量
的回归类型(不必说明理由),并根据数据,求出
与
的回归方程;
(2)已知企业年利润
千万元与
的关系式为
(其中
为自然对数的底数),根据(1)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如下表:
年份 | 1 | 2 | 3 | 4 | 5 |
维护费 | 1.1 | 1.6 | 2 | 2.5 | 2.8 |
(1)在这5年中随机抽取两年,求平均每台设备每年的维护费用至少有1年多于2万元的概率;
(2)求
关于
的线性回归方程.若该设备的价格是每台16万元,你认为应该使用满五年换一次设备,还是应该使用满八年换一次设备?请说明理由.
参考公式:用最小二乘法求线性回归方程
的系数公式
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com