精英家教网 > 高中数学 > 题目详情
17.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为120°,且$|\overrightarrow a|=3,|\overrightarrow a-\overrightarrow b|=\sqrt{19}$,则$|\overrightarrow b|$=2.

分析 对|$\overrightarrow{a}-\overrightarrow{b}$|=$\sqrt{19}$两边平方得出关于|$\overrightarrow{b}$|的方程,从而可求得|$\overrightarrow{b}$|.

解答 解:∵|$\overrightarrow{a}-\overrightarrow{b}$|=$\sqrt{19}$,
∴${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=19,
∵${\overrightarrow{a}}^{2}$=|$\overrightarrow{a}$|2=9,$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos120°=-$\frac{3}{2}$|$\overrightarrow{b}$|,
即9+3|$\overrightarrow{b}$|+|$\overrightarrow{b}$|2=19,解得|$\overrightarrow{b}$|=2.
故答案为2.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,圆C的方程为ρ=2acosθ(a>0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为$\left\{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}\right.$(t为参数).
(1)求直角坐标系下圆C的标准方程和直线l的普通方程;
(2)若直线l与圆C恒有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知离散型随机变量X的分布列如下:
X012
Px4x5x
由此可以得到期望E(X)=1.4,方差D(X)=0.44.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|y=ln(4-x2),x∈R},$B=\left\{{x\left|{\sqrt{x}≤2,x∈Z}\right.}\right\}$,则A∩B=(  )
A.(0,2)B.[0,2)C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知 $\frac{π}{2}<α<β<\frac{3π}{4},cos({α-β})=\frac{12}{13},sin({α+β})=-\frac{3}{5}$,则sin2α=(  )
A.$-\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{16}{65}$D.$-\frac{56}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD的底面ABCD是平行四边形,∠DAB=60°,AB=2AD=2,PD⊥平面ABCD
(1)求证:AD⊥PB;
(2)若BD与平面PBC的所成角为30°,求三棱锥P-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义域为[a-1,2a+1]的奇函数f(x)=x3+(b-1)x2+x,则f(2x-b)+f(x)≥0的解集为(  )
A.[1,3]B.$[\frac{1}{3},2]$C.[1,2]D.$[\frac{1}{3},1]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.有下列关系:①学生上学的年限与知识掌握量的关系;②函数图象上的点与该点的坐标之间的关系;③葡萄的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系.其中有相关关系的是(  )
A.①②③B.①②C.②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.[示范高中]若一个数列的第m项等于这个数列的前m项的乘积,则称该数列为“m积数列”.若各项均为正数的等比数列{an}是一个“2017积数列”,且a1>1,则当其前n项的乘积取最大值时n的值为(  )
A.1008B.1009C.1007或1008D.1008或1009

查看答案和解析>>

同步练习册答案