精英家教网 > 高中数学 > 题目详情
5.已知集合A={x|y=ln(4-x2),x∈R},$B=\left\{{x\left|{\sqrt{x}≤2,x∈Z}\right.}\right\}$,则A∩B=(  )
A.(0,2)B.[0,2)C.{0,1}D.{0,1,2}

分析 先分别求出集合A和B,由此利用交集定义能求出集合A和B.

解答 解:∵集合A={x|y=ln(4-x2),x∈R},$B=\left\{{x\left|{\sqrt{x}≤2,x∈Z}\right.}\right\}$,
∴A={x|4-x2>0}={x|-2<x<2},B={x|0≤x≤4,x∈Z}={0,1,2,3,4},
∴A∩B={0,1}.
故选:C.

点评 本题考查集合的交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,2a9=a12+12,则数列{an}的前11项和S11=(  )
A.24B.48C.66D.132

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某校从高中1200名学生中抽取50名学生进行问卷调查,如果采用系统抽样的方法,将这1200名学生从1开始进行编号,已知被抽取到的号码有15,则下列号码中被抽取到的还有(  )
A.255B.125C.75D.35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{a}{x}+lnx-1,a∈R$.
(1)若曲线y=f(x)在P(1,f(1))处的切线平行于直线y=-x+1,求函数y=f(x)的单调区间;
(2)若a>0,且对任意x∈(0,2e]时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=f(x)在(0,+∞)上可导,且满足(x-1)[2f(x)+xf′(x)]>0(x≠1)恒成立,f(1)=2,若曲线f(x)在点(1,2)处的切线为y=g(x)且g(a)=2016,则a=-502.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an},a1=-2013,其n前项和${S_n},若\frac{{{S_{12}}}}{12}-\frac{{{S_{10}}}}{10}=2,则{S_{2017}}$=(  )
A.2017B.3C.6051D.-2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为120°,且$|\overrightarrow a|=3,|\overrightarrow a-\overrightarrow b|=\sqrt{19}$,则$|\overrightarrow b|$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设等差数列{an}的前n项和为Sn,若$\frac{{S}_{12}}{12}$=24,$\frac{{S}_{9}}{9}$=18,则S5=(  )
A.18B.36C.50D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的前n项和为Sn满足a1=1,log2an=log2an+1-1,则$\frac{{{S_{20}}-{S_{17}}}}{{{a_{20}}-{a_{17}}}}$=2.

查看答案和解析>>

同步练习册答案