精英家教网 > 高中数学 > 题目详情
13.已知函数$f(x)=\frac{a}{x}+lnx-1,a∈R$.
(1)若曲线y=f(x)在P(1,f(1))处的切线平行于直线y=-x+1,求函数y=f(x)的单调区间;
(2)若a>0,且对任意x∈(0,2e]时,f(x)>0恒成立,求实数a的取值范围.

分析 (1)求出函数的导数,得到关于a的方程,求出a的值,求出函数的单调区间即可;
(2)问题转化为$\frac{a}{x}+lnx-1>0$对x∈(0,2e]恒成立,即a>x(1-lnx)对x∈(0,2e]恒成立,设g(x)=x(1-lnx)=x-xlnx,x∈(0,2e],根据函数的单调性证明即可.

解答 解:(1)直线y=-x+1的斜率为-1,
函数y=f(x)的导数为$f'(x)=-\frac{a}{x^2}+\frac{1}{x}$…(2分)
所以f'(1)=-a+1=-1,
所以a=2…..(3分)
因为y=f(x)的定义域为(0,+∞),
又$f'(x)=-\frac{2}{x^2}+\frac{1}{x}=\frac{x-2}{x^2}$…(4分)
当x∈(2,+∞)时,f'(x)>0,f(x)为增函数,
当x∈(0,2)时,f'(x)<0,f(x)为减函数,
综上,函数f(x)的单调增区间是(2,+∞),单调减区间是(0,2)…(6分)
(2)因为a>0,且对任意x∈(0,2e]时,f(x)>0恒成立,
即$\frac{a}{x}+lnx-1>0$对x∈(0,2e]恒成立,
即a>x(1-lnx)对x∈(0,2e]恒成立                   …..(7分)
设g(x)=x(1-lnx)=x-xlnx,x∈(0,2e],
所以g'(x)=1-lnx-1=lnx,
当x∈(0,1)时,g'(x)>0,g(x)为增函数,
当x∈(1,2e]时,g'(x)<0,g(x)为减函数,
所以当x=1时,函数g(x)在x∈(0,2e]上取得最大值  …(10分)
所以g(x)≤g(1)=1-ln1=1,
所以实数a的取值范围(1,+∞)…..(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知三棱锥A-BCD的各棱长都相等,E为BC中点,则异面直线AB与DE所成角的余弦值为(  )
A.$\frac{5\sqrt{3}}{6}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{33}}{6}$D.$\sqrt{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.曲线C的极坐标方程为ρ=6sinθ化为直角坐标方程后为(  )
A.x2+(y-3)2=9B.x2+(y+3)2=9C.(x+3)2+y2=9D.(x-3)2+y2=9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图1是某高三学生进入高中三年来的数学考试成绩的茎叶图,第1次到第第14次的考试成绩依次记为A1,A2,…A14,如图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知离散型随机变量X的分布列如下:
X012
Px4x5x
由此可以得到期望E(X)=1.4,方差D(X)=0.44.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等差数列{an}中,a6+3a8=8,则a5+a10=(  )
A.16B.12C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|y=ln(4-x2),x∈R},$B=\left\{{x\left|{\sqrt{x}≤2,x∈Z}\right.}\right\}$,则A∩B=(  )
A.(0,2)B.[0,2)C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD的底面ABCD是平行四边形,∠DAB=60°,AB=2AD=2,PD⊥平面ABCD
(1)求证:AD⊥PB;
(2)若BD与平面PBC的所成角为30°,求三棱锥P-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.位于直角坐标原点的质点P按一下规则移动:①每次移动一个单位②向左移动的概率为$\frac{1}{4}$,向右移动的概率为$\frac{3}{4}$.移动5次后落在点(-1,0)的概率为(  )
A.C${\;}_{5}^{3}$($\frac{1}{4}$)3($\frac{3}{4}$)2B.C${\;}_{5}^{3}$($\frac{1}{4}$)2($\frac{3}{4}$)3C.C${\;}_{4}^{2}$($\frac{1}{4}$)3($\frac{3}{4}$)2D.C${\;}_{4}^{2}$($\frac{1}{4}$)2($\frac{3}{4}$)3

查看答案和解析>>

同步练习册答案