精英家教网 > 高中数学 > 题目详情
11.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求四面体N-BCM的体积.

分析 (Ⅰ)取BC中点E,连结EN,EM,得NE是△PBC的中位线,推导出四边形ABEM是平行四边形,由此能证明MN∥平面PAB.
(Ⅱ)取AC中点F,连结NF,NF是△PAC的中位线,推导出NF⊥面ABCD,延长BC至G,使得CG=AM,连结GM,则四边形AGCM是平行四边形,由此能求出四面体N-BCM的体积.

解答 证明:(Ⅰ)取BC中点E,连结EN,EM,
∵N为PC的中点,∴NE是△PBC的中位线
∴NE∥PB,
又∵AD∥BC,∴BE∥AD,
∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,
∴BE=$\frac{1}{2}$BC=AM=2,
∴四边形ABEM是平行四边形,
∴EM∥AB,∴平面NEM∥平面PAB,
∵MN?平面NEM,∴MN∥平面PAB.
解:(Ⅱ)取AC中点F,连结NF,
∵NF是△PAC的中位线,
∴NF∥PA,NF=$\frac{1}{2}PA$=2,
又∵PA⊥面ABCD,∴NF⊥面ABCD,
如图,延长BC至G,使得CG=AM,连结GM,
∵AM$\underset{∥}{=}$CG,∴四边形AGCM是平行四边形,
∴AC=MG=3,
又∵ME=3,EC=CG=2,
∴△MEG的高h=$\sqrt{5}$,
∴S△BCM=$\frac{1}{2}×BC×h$=$\frac{1}{2}×4×\sqrt{5}$=2$\sqrt{5}$,
∴四面体N-BCM的体积VN-BCM=$\frac{1}{3}×{S}_{△BCM}×NF$=$\frac{1}{3}×2\sqrt{5}×2$=$\frac{4\sqrt{5}}{3}$.

点评 本题考查线面平行的证明,考查四面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设a>0,|x-1|<$\frac{a}{3}$,|y-2|<$\frac{a}{3}$,求证:|2x+y-4|<a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(x2-$\frac{1}{x}$)8的展开式中x7的系数为-56(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x||x+a|≥a},B={x|x2+mx+n<0}
(1)若a=2,m=4,n=-5,求A∩B,A∪B;
(2)若a>0,A∩B=(-3,-1],且A∪B=R,求a,m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=sinx-$\sqrt{3}$cosx的图象可由函数y=2sinx的图象至少向右平移$\frac{π}{3}$个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{OA}$=(5,m),$\overrightarrow{OB}$=(2,-m),$\overrightarrow{OC}$=(6,-10),若A、B、C三点共线,则实数m等于(  )
A.6B.-6C.$\frac{4}{3}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=(  )
A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知平行直线l1:2x+y-1=0,l2:2x+y+1=0,则l1,l2的距离$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.
(Ⅰ)求椭圆E的方程及点T的坐标;
(Ⅱ)设O是坐标原点,直线l′平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA|•|PB|,并求λ的值.

查看答案和解析>>

同步练习册答案