精英家教网 > 高中数学 > 题目详情
6.直线y=kx-1与曲线$y=-\sqrt{1-{{(x-2)}^2}}$有两个不同的公共点,则k的取值范围是(0,$\frac{1}{3}$].

分析 根据题意得:y=kx-1为恒过定点(0,-1)的直线,曲线表示圆心为(2,0),半径为1的下半圆,由此利用数形结合思想能求出k的取值范围.

解答 解:根据题意得:y=kx-1为恒过定点(0,-1)的直线,
曲线表示圆心为(2,0),半径为1的下半圆,如图所示,
当直线与圆D相切时,有$\frac{|2k-1|}{\sqrt{{k}^{2}+1}}$=1,
解得:k=0或k=$\frac{4}{3}$(不合题意,舍去);
把C(3,0)代入y=kx-1,得k=$\frac{1}{3}$,
∴k的取值范围是(0,$\frac{1}{3}$].
故答案为:(0,$\frac{1}{3}$].

点评 本题考查直线的斜率的取值范围的求法,考查直线、圆、点到直线距离公式、直线与圆相切等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.医学上所说的“三高”通常是指血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
(1)请将列联表补充完整;
  患三高疾病 不患三高疾病 合计
 男 
24
 6 30
 女 
12
 
18
 
30
 合计 36 
24
 
60
②能否在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关?
下列的临界值表供参考:
 P(K2≥k) 0.150.10  0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为$\frac{1}{2}$与p,且乙投球2次均未命中的概率为$\frac{1}{16}$.
(Ⅰ)求甲投球2次,至少命中1次的概率;
(Ⅱ)若甲、乙两人各投球2次,求两人共命中3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=lnx-bx+a+1
(1)求函数f(x)的单调区间;
(2)设b=1,若存在x∈(0,+∞)使得f(x)≥0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x=3是函数y=alnx+x2-10x的一个极值点,则实数a=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.由a1=1,d=2确定的等差数列{an}中,当an=59时,序号n=(  )
A.29B.30C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某校组织“中国诗词”竞赛,在“风险答题”的环节中,共为选手准备了A、B、C三类不同的题目,选手每答对一个A类、B类或C类的题目,将分别得到300分、200分、100分,但如果答错,则相应要扣去300分、200分、100分,根据平时训练经验,选手甲答对A类、B类或C类题目的概率分别为0.6、0.75、0.85,若腰每一次答题的均分更大一些,则选手甲应选择的题目类型应为B(填A、B或C)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数 f (x)=Asin(ωx+φ) 的部分图象如图所示,则 f (x) 的表达式为f(x)=3sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若x>-1,则f(x)=$\frac{2+x}{1+x}\sqrt{1+{{(1+x)}^2}}$的最小值是2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案