精英家教网 > 高中数学 > 题目详情
15.函数 f (x)=Asin(ωx+φ) 的部分图象如图所示,则 f (x) 的表达式为f(x)=3sin(2x+$\frac{π}{6}$).

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得 f (x) 的表达式.

解答 解:根据函数 f (x)=Asin(ωx+φ) 的部分图象,
可得A=3,$\frac{1}{2}•\frac{2π}{ω}$=$\frac{2π}{3}$-$\frac{π}{6}$,∴ω=2.
再根据五点法作图可得,2•$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$,故 f (x) 的表达式为f(x)=3sin(2x+$\frac{π}{6}$),
故答案为:f(x)=3sin(2x+$\frac{π}{6}$).

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列$\frac{1}{1×3},\frac{1}{3×5},\frac{1}{5×7},…,\frac{1}{(2n-1)(2n+1)}$,…,Sn是其前n项和,计算S1、S2、S3,由此推测计算Sn的公式,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线y=kx-1与曲线$y=-\sqrt{1-{{(x-2)}^2}}$有两个不同的公共点,则k的取值范围是(0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若直线l1:$\sqrt{3}$x-3y+2=0绕着它与x轴的交点逆时针旋转30°得到直线l2,则直线l2的方程是$\sqrt{3}x-y+2=0$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线f(x)=2alnx+bx(a>0,b>0)在点(1,f(1))处的切线的斜率为2,则$\frac{8a+b}{ab}$的最小值是(  )
A.10B.9C.8D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=f(x)的值域为[$\frac{1}{4}$,3],y=f2(x)-f(x)+1的值域为[$\frac{3}{4}$,7];F(x)=4f(x)+$\frac{1}{f(x)}$的值域为[4,$\frac{37}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0),F1、F2分别是双曲线的左右焦点,P是双曲线右支上一点,圆I与F1P的延长线,线段F2P,F1F2的延长线均相切,连接PI并延长交x轴于点D,若S${\;}_{□PI{F}_{1}}$:S${\;}_{□DI{F}_{1}}$=1:2,那么该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的首项a1=1,且an+1=an+2n-1,则an=n2-2n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在同一平面直角坐标系中,曲线C经过伸缩变换$\left\{{\begin{array}{l}{{x^'}=2x}\\{{y^'}=2y}\end{array}}\right.$后,变为曲线C′:(x′-5)2+(y′+6)2=1.则曲线C的周长为π.

查看答案和解析>>

同步练习册答案