精英家教网 > 高中数学 > 题目详情
8.在同一平面直角坐标系中,曲线C经过伸缩变换$\left\{{\begin{array}{l}{{x^'}=2x}\\{{y^'}=2y}\end{array}}\right.$后,变为曲线C′:(x′-5)2+(y′+6)2=1.则曲线C的周长为π.

分析 根据题意,由伸缩变换公式可得曲线C的方程,分析可得曲线C为半径为$\frac{1}{2}$的圆,由圆的周长公式计算可得答案.

解答 解:根据题意,曲线C经过伸缩变换$\left\{{\begin{array}{l}{{x^'}=2x}\\{{y^'}=2y}\end{array}}\right.$后,变为曲线C′:(x′-5)2+(y′+6)2=1,
则有(2x-5)2+(2y+6)2=1,
即曲线C的方程为:(x-$\frac{5}{2}$)2+(y+3)2=$\frac{1}{4}$,为半径为$\frac{1}{2}$的圆,其周长l=2π($\frac{1}{2}$)=π,
故答案为:π.

点评 本题考查平面直角坐标系的伸缩变换,涉及圆的周长计算,关键是求出C的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数 f (x)=Asin(ωx+φ) 的部分图象如图所示,则 f (x) 的表达式为f(x)=3sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若x>-1,则f(x)=$\frac{2+x}{1+x}\sqrt{1+{{(1+x)}^2}}$的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cos($\frac{π}{2}$-x)+$\sqrt{3}$sin($\frac{π}{2}$+x)(x∈R).
(1)求函数y=f(x)的最大值,并指出此时x的值;
(2)若α∈(-$\frac{π}{2}$,$\frac{π}{2}$)且f(α)=1,求f(2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(Ⅰ)求函数$y=\frac{{{x^3}-1}}{sinx}$的导数;
(Ⅱ)求$\int_{-a}^a{\sqrt{{a^2}-{x^2}}}dx$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M$(1,\frac{3}{2})$在椭圆E上.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(-4,0),直线y=kx+1与椭圆E交于A,B两点,若∠APO=∠BPO,(其中O为坐标原点),
求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$cos({α+\frac{2π}{3}})=\frac{4}{5},-\frac{π}{2}<α<0$,则$sin({α+\frac{π}{3}})+sinα$=$-\frac{4\sqrt{3}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\frac{ln(2-x)}{\sqrt{x-1}}$的定义域为A,不等式(x-1)2<logax在x∈A时恒成立,则实数a的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的最值及取得最值时的x的值.
(1)y=sinx,x∈[-$\frac{π}{4}$,$\frac{3π}{4}$],当x=-$\frac{π}{4}$时,ymin=-$\frac{\sqrt{2}}{2}$;当x=$\frac{π}{2}$时,ymax=1;
(2)y=2sin($\frac{1}{2}$x-$\frac{π}{4}$),x∈[0,2π];
(3)y=cos2x+$\sqrt{3}$sinx+$\frac{5}{4}$,x∈R.

查看答案和解析>>

同步练习册答案