精英家教网 > 高中数学 > 题目详情
13.已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M$(1,\frac{3}{2})$在椭圆E上.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(-4,0),直线y=kx+1与椭圆E交于A,B两点,若∠APO=∠BPO,(其中O为坐标原点),
求k的值.

分析 (Ⅰ)求出抛物线的焦点,可得椭圆的焦点,由椭圆的定义,运用两点的距离公式可得2a=4,即a=2,再由a,b,c的关系,可得b,进而得到椭圆方程;
(Ⅱ)若∠APO=∠BPO,则kPA+kPB=0,设A(x1,kx1+1),B(x2,kx2+1),运用直线的斜率公式,联立直线方程和椭圆方程,运用韦达定理,化简整理可得k的方程,解方程即可得到k的值.

解答 解:(Ⅰ)因为抛物线焦点为(1,0),所以椭圆的焦点坐标为F2(1,0),F1(-1,0),
又因为M(1,$\frac{3}{2}$)在椭圆上,
 所以2a=|MF1|+|MF2|=$\sqrt{(1+1)^{2}+\frac{9}{4}}$+$\frac{3}{2}$=4,
即a=2,又因为c=1  所以b2=a2-c2=3,
所以椭圆的方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(Ⅱ)若∠APO=∠BPO,则kPA+kPB=0,
设A(x1,kx1+1),B(x2,kx2+1),
∴$\frac{{k{x_1}+1}}{{{x_1}+4}}+\frac{{k{x_2}+1}}{{{x_2}+4}}={0^{\;}}即2k{x_1}{x_2}+(4k+1)({x_1}+{x_2})+8=0$,
联立$\left\{{\begin{array}{l}{y=kx+1}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$,消去y得到(3+4k2)x2+8kx-8=0,
∴${x_1}+{x_2}=\frac{-8k}{{3+4{k^2}}},{x_1}{x_2}=\frac{-8}{{3+4{k^2}}}$,
∴$\frac{-16k}{{3+4{k^2}}}+(4k+1)\frac{-8k}{{3+4{k^2}}}+8=0$,
即-16k-32k2-8k+24+32k2=0,
∴k=1.

点评 本题考查椭圆的方程的求法,注意运用定义法和基本量的关系,考查直线的斜率的求法,注意运用联立直线方程和椭圆方程,运用韦达定理和直线的斜率公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数y=f(x)的值域为[$\frac{1}{4}$,3],y=f2(x)-f(x)+1的值域为[$\frac{3}{4}$,7];F(x)=4f(x)+$\frac{1}{f(x)}$的值域为[4,$\frac{37}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:(x-3)2+(y-4)2=4,直线l过点A(1,0).
(1)求圆C的圆心坐标和半径;
(2)若直线l与圆C相切,求直线l的方程;
(3)若直线l与圆C相交于P,Q两点,求三角形CPQ的面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.正四棱锥V-ABCD中,底面ABCD是边长2为的正方形,其他四个侧面都是侧棱长为$\sqrt{5}$的等腰三角形.
(1)求正四棱锥V-ABCD的体积.
(2)求二面角V-BC-A的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在同一平面直角坐标系中,曲线C经过伸缩变换$\left\{{\begin{array}{l}{{x^'}=2x}\\{{y^'}=2y}\end{array}}\right.$后,变为曲线C′:(x′-5)2+(y′+6)2=1.则曲线C的周长为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a=log30.5,b=30.5,c=0.53,则a,b,c三个数的大小关系是(  )
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}满足a2=3,a3+a5=2
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn及Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某地计划建造一间背面靠墙的小屋,其地面面积为12m2,墙面的高度为3m,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元.设房屋正面地面长方形的边长为xm,房屋背面和地面的费用不计.
(1)用含x的表达式表示出房屋的总造价z;
(2)怎样设计房屋能使总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在正项数列{an}中,已知点(an,an+1)(n∈N*)均在函数y=$\frac{2}{3}$x的图象上,且a3a4=$\frac{8}{27}$.
(1)求数列{an}的通项an
(2)若数列{bn}的前n项和为Sn,且bn=n•an,求Sn

查看答案和解析>>

同步练习册答案