精英家教网 > 高中数学 > 题目详情
20.已知$cos({α+\frac{2π}{3}})=\frac{4}{5},-\frac{π}{2}<α<0$,则$sin({α+\frac{π}{3}})+sinα$=$-\frac{4\sqrt{3}}{5}$.

分析 利用两角和的余弦函数公式整理已知等式,然后再利用两角和的正弦函数公式计算得答案.

解答 解:∵$cos({α+\frac{2π}{3}})=\frac{4}{5},-\frac{π}{2}<α<0$,
∴$cosαcos\frac{2π}{3}-sinαsin\frac{2π}{3}=\frac{4}{5}$,即$\frac{1}{2}cosα+\frac{\sqrt{3}}{2}sinα=-\frac{4}{5}$,
∴$sin({α+\frac{π}{3}})+sinα$=$sinαcos\frac{π}{3}+cosαsin\frac{π}{3}+sinα$
=$\frac{1}{2}sinα+\frac{\sqrt{3}}{2}cosα+sinα$=$\sqrt{3}(\frac{\sqrt{3}}{2}sinα+\frac{1}{2}cosα)=-\frac{4\sqrt{3}}{5}$.
故答案为:$-\frac{4\sqrt{3}}{5}$.

点评 本题考查两角和与差的三角函数,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0),F1、F2分别是双曲线的左右焦点,P是双曲线右支上一点,圆I与F1P的延长线,线段F2P,F1F2的延长线均相切,连接PI并延长交x轴于点D,若S${\;}_{□PI{F}_{1}}$:S${\;}_{□DI{F}_{1}}$=1:2,那么该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知定义在R上的函数f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函数.
(1)求a,b的值,并判断函数f(x)在定义域中的单调性(不用证明);
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在同一平面直角坐标系中,曲线C经过伸缩变换$\left\{{\begin{array}{l}{{x^'}=2x}\\{{y^'}=2y}\end{array}}\right.$后,变为曲线C′:(x′-5)2+(y′+6)2=1.则曲线C的周长为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若关于x的不等式$2x+\frac{2}{x-1}≥a$对于一切x∈(1,+∞)恒成立,则实数a的取值范围是(  )
A.(-∞,4]B.[4,+∞)C.(-∞,6]D.[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}满足a2=3,a3+a5=2
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn及Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,Sn=2an-1,数列{bn}为等差数列,且 b1=a1,b6=a5
(1)求数列{an}与{bn}的通项公式;
(2)若Cn=anbn,求数列{cn}的前n项 和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5),若对于任意x∈[2,4],不等式f(x)+t≤2恒成立,则t的取值范围为(-∞,10].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的奇函数f(x)对任意x1,x2(x1≠x2)都有(x1-x2)[f(x1)-f(x2)]<0,若正实数a使得不等式f(a2ea-a2)+f(ba3)<0恒成立,则b的取值范围是(  )
A.[-1,+∞)B.[-e,+∞)C.[-1,e]D.(-∞,1]

查看答案和解析>>

同步练习册答案