精英家教网 > 高中数学 > 题目详情
5.已知数列$\frac{1}{1×3},\frac{1}{3×5},\frac{1}{5×7},…,\frac{1}{(2n-1)(2n+1)}$,…,Sn是其前n项和,计算S1、S2、S3,由此推测计算Sn的公式,并给出证明.

分析 直接计算可得S1、S2、S3,由此猜测${S_n}=\frac{n}{2n+1}$(n∈N*).运用数学归纳法和裂项相消求和,即可得到结论.

解答 解:S1=$\frac{1}{1×3}$=$\frac{1}{3}$;
S2=$\frac{1}{1×3}$+$\frac{1}{3×5}$=$\frac{1}{2}$(1-$\frac{1}{3}$)+$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)=$\frac{2}{5}$;
S3=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$)=$\frac{1}{2}$(1-$\frac{1}{7}$)=$\frac{3}{7}$.
可得${S_1}=\frac{1}{3},{S_2}=\frac{2}{5},{S_3}=\frac{3}{7}$;
猜测${S_n}=\frac{n}{2n+1}$(n∈N*).
(方法一)用数学归纳法证明:
(1)当n=1时,S1=$\frac{1}{2×1+1}$=$\frac{1}{3}$,猜想成立;
(2)假设当n=k(k∈N*)时猜想成立.即Sk=$\frac{k}{2k+1}$,
那么当n=k+1时,有${S_{k+1}}={S_k}+\frac{1}{(2k+1)(2k+3)}=\frac{k}{2k+1}+\frac{1}{(2k+1)(2k+3)}$
=$\frac{k(2k+3)+1}{(2k+1)(2k+3)}$=$\frac{k+1}{2k+3}=\frac{k+1}{2(k+1)+1}$,
所以,当n=k+1时,猜想也成立.
综上,对任意n∈N*,猜想成立.
( 方法二 )由$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
可得Sn=$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-3)(2n-1)}$+$\frac{1}{(2n-1)(2n+1)}$
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-3}$-$\frac{1}{2n-1}$+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.

点评 本题考查数列的求和的方法:数学归纳法和裂项相消求和,考查归纳和猜想,以及化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.3男3女共6名同学从左至右排成一排合影,要求左端排男同学,右端排女同学,且女同学至多有2人排在一起,则不同的排法种数为(  )
A.144B.160C.180D.240

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.医学上所说的“三高”通常是指血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
(1)请将列联表补充完整;
  患三高疾病 不患三高疾病 合计
 男 
24
 6 30
 女 
12
 
18
 
30
 合计 36 
24
 
60
②能否在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关?
下列的临界值表供参考:
 P(K2≥k) 0.150.10  0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,已知正三棱柱ABC-A1B1C1的所有棱长均为2,△DEF为平行于棱柱底面的截面,O1,O分别为上、下底面内一点,则六面体O1DEFO的体积为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆x2+y2=9内有一点P(-1,2),AB为过点P的弦且倾斜角为θ.
(1)若θ=135°,求弦AB的长;
(2)当弦AB被点P平分时,求出直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=x3-3x2+1在x0处取得极小值,则x0=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为$\frac{1}{2}$与p,且乙投球2次均未命中的概率为$\frac{1}{16}$.
(Ⅰ)求甲投球2次,至少命中1次的概率;
(Ⅱ)若甲、乙两人各投球2次,求两人共命中3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=lnx-bx+a+1
(1)求函数f(x)的单调区间;
(2)设b=1,若存在x∈(0,+∞)使得f(x)≥0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数 f (x)=Asin(ωx+φ) 的部分图象如图所示,则 f (x) 的表达式为f(x)=3sin(2x+$\frac{π}{6}$).

查看答案和解析>>

同步练习册答案