分析 直接计算可得S1、S2、S3,由此猜测${S_n}=\frac{n}{2n+1}$(n∈N*).运用数学归纳法和裂项相消求和,即可得到结论.
解答 解:S1=$\frac{1}{1×3}$=$\frac{1}{3}$;
S2=$\frac{1}{1×3}$+$\frac{1}{3×5}$=$\frac{1}{2}$(1-$\frac{1}{3}$)+$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)=$\frac{2}{5}$;
S3=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$)=$\frac{1}{2}$(1-$\frac{1}{7}$)=$\frac{3}{7}$.
可得${S_1}=\frac{1}{3},{S_2}=\frac{2}{5},{S_3}=\frac{3}{7}$;
猜测${S_n}=\frac{n}{2n+1}$(n∈N*).
(方法一)用数学归纳法证明:
(1)当n=1时,S1=$\frac{1}{2×1+1}$=$\frac{1}{3}$,猜想成立;
(2)假设当n=k(k∈N*)时猜想成立.即Sk=$\frac{k}{2k+1}$,
那么当n=k+1时,有${S_{k+1}}={S_k}+\frac{1}{(2k+1)(2k+3)}=\frac{k}{2k+1}+\frac{1}{(2k+1)(2k+3)}$
=$\frac{k(2k+3)+1}{(2k+1)(2k+3)}$=$\frac{k+1}{2k+3}=\frac{k+1}{2(k+1)+1}$,
所以,当n=k+1时,猜想也成立.
综上,对任意n∈N*,猜想成立.
( 方法二 )由$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
可得Sn=$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-3)(2n-1)}$+$\frac{1}{(2n-1)(2n+1)}$
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-3}$-$\frac{1}{2n-1}$+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.
点评 本题考查数列的求和的方法:数学归纳法和裂项相消求和,考查归纳和猜想,以及化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 144 | B. | 160 | C. | 180 | D. | 240 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 患三高疾病 | 不患三高疾病 | 合计 | |
| 男 | 24 | 6 | 30 |
| 女 | 12 | 18 | 30 |
| 合计 | 36 | 24 | 60 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com