精英家教网 > 高中数学 > 题目详情
16.医学上所说的“三高”通常是指血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
(1)请将列联表补充完整;
  患三高疾病 不患三高疾病 合计
 男 
24
 6 30
 女 
12
 
18
 
30
 合计 36 
24
 
60
②能否在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关?
下列的临界值表供参考:
 P(K2≥k) 0.150.10  0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)根据题意,填写列联表即可;
(2)根据表中数据,计算观测值K2,对照临界值即可得出结论.

解答 解:(1)根据题意,填写列联表如下;

  患三高疾病 不患三高疾病 合计
 男24  6 30
 女 12 
18
 
30
 合计 36 
24
 
60
(2)根据表中数据,计算K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{60{×(24×18-6×12)}^{2}}{30×30×36×24}$=10>7.879;
∴在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关.

点评 本题考查了列联表与独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若函数$f(x)=\left\{\begin{array}{l}\frac{1}{1-x},\;\;\;\;x<0\;\;\\{(\frac{1}{3})^x},\;\;x≥0\;\;.\end{array}\right.$则f(1)+f(-1)=$\frac{5}{6}$;不等式$f(x)≥\frac{1}{3}$的解集为{x|-2≤x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解下列不等式:
(1)$\frac{x-1}{x+3}$≤2
(2)$\frac{{x}^{2}+2x-3}{-{x}^{2}+x+6}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是计算$1+\frac{1}{3}+\frac{1}{5}+…+\frac{1}{31}$的值的程序框图,则图中①②处应填写的语句分别是(  )
①①
A.n=n+2,i>16?B.n=n+2,i≥16?C.n=n+1,i>16?D.n=n+1,i≥16?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知(2x+1)(x-2)6=a0+a1x+a2x2+…+a7x7
(Ⅰ)求a0+a1+a2…+a7的值
(Ⅱ)求a5的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若{an}为等差数列,{bn}为等比数列,设cn=anbn,则我们经常用“错位相减法”求数列{cn}的前n项和Sn,记Sn=f(n).在这个过程中许多同学常将结果算错,为了减少出错,我们可代入n=1和n=2进行检验:计算S1=f(1),检验是否与a1b1相等;再计算S2=f(2),检验是否与a1b1+a2b2相等,如果两处中有一处不等,则说明计算错误.某次数学考试对“错位相减法”进行了考查,现随机抽取100名学生,对他们是否进行检验以及答案是否正确的情况进行了统计,得到数据如表所示:
答案正确答案错误合计
检验35
未检验40
合计50100
(1)请完成上表;
(2)是否有95%的把握认为检验计算结果可以有效地避免计算错误?
(3)在调查的100名学生中,用分层抽样的方法从未检验计算结果的学生中抽取8人,进一步调查他们不检验的原因,现从这8人中任取3人,记其中答案正确的是学生人数为随机变量X,求X的分布列和数学期望.
附:下面的临界值表供参考
P(K2≥k00.100.050.0250.010
K02.7063.8415.0246.635
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}的前n项和为Sn,已知$\frac{{S}_{n}}{2}$=an-2n(n∈N*).
(1)求a1的值,若an=2ncn,证明数列{cn}是等差数列;
(2)设bn=log2an-log2(n+1),数列{$\frac{1}{{b}_{n}}$}的前n项和为Bn,若存在整数m,使对任意n∈N*且n≥2,都有B3n-Bn>$\frac{m}{20}$成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列$\frac{1}{1×3},\frac{1}{3×5},\frac{1}{5×7},…,\frac{1}{(2n-1)(2n+1)}$,…,Sn是其前n项和,计算S1、S2、S3,由此推测计算Sn的公式,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线y=kx-1与曲线$y=-\sqrt{1-{{(x-2)}^2}}$有两个不同的公共点,则k的取值范围是(0,$\frac{1}{3}$].

查看答案和解析>>

同步练习册答案