精英家教网 > 高中数学 > 题目详情
17.己知x>$\frac{3}{2}$,则函数y=2x+$\frac{4}{2x-3}$的最小值是7.

分析 由x>$\frac{3}{2}$,可得2x-3>0,即有函数y=2x+$\frac{4}{2x-3}$=(2x-3)+$\frac{4}{2x-3}$+3,运用基本不等式可得最小值,并求得等号成立的条件.

解答 解:由x>$\frac{3}{2}$,可得2x-3>0,
则函数y=2x+$\frac{4}{2x-3}$
=(2x-3)+$\frac{4}{2x-3}$+3
≥2$\sqrt{(2x-3)•\frac{4}{2x-3}}$+3=7.
当且仅当2x-3=2,即x=$\frac{5}{2}$时,取得最小值7.
故答案为:7.

点评 本题考查基本不等式的运用:求最值,注意运用变形的技巧和满足的条件:一正二定三等,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,E为CD上任意一点.
(I)求证:B1E⊥AD1
(Ⅱ)若CD=$\sqrt{2}$a,是否存在这样的E点,使得AD1与平面B1AE成45°的角?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{{\begin{array}{l}{x-1,x≤2}\\{2+{{log}_a}x,x>2}\end{array}}$(a>0且a≠1)的最大值为1,则a的取值范围是(  )
A.$[\frac{1}{2},1)$B.(0,1)C.$(0,\frac{1}{2}]$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某中学对男女学生是否喜爱古典音乐进行了一个调查,调查者对学校高三年级随机抽取了100名学生,调查结果如表:
喜爱不喜爱总计
男学生6080
女学生
总计7030
(1)完成如表,并根据表中数据,判断是否有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;
(2)从以上被调查的学生中以性别为依据采用分层抽样的方式抽取5名学生,再从这5名学生中随机抽取2名学生去某古典音乐会的现场观看演出,求正好有1名男生被抽中的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列不等式的证明过程:
①若a,b∈R,则$\frac{b}{a}$+$\frac{a}{b}$≥2$\sqrt{\frac{b}{a}•\frac{a}{b}}$=2;
②若x,y∈R,则|x+$\frac{4}{y}$|=|x|+$\frac{4}{|y|}$≥2$\sqrt{|x|•\frac{4}{|y|}}$;
③若a,b∈R,ab<0,则$\frac{b}{a}$+$\frac{a}{b}$=-[(-$\frac{b}{a}$)+(-$\frac{a}{b}$)]≤-2$\sqrt{(-\frac{b}{a})•(-\frac{a}{b})}$=-2.
其中正确的序号是③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.x>0时,函数y=x+$\frac{1}{x}$-1的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数列{an}是等差数列,a1=1,an=-512,Sn=-1022,求公差d及n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=2-k}\\{y=3-2k}{\;}\end{array}\right.$(k为参数),以原点O为极点,以x轴正半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.圆C的极坐标方程为ρ=2sinθ.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B,若点M的坐标为(2,3).求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)的定义域为[-1,5],部分对应值如表,y=f'(x)的图象如图所示,下列关于函数f(x)的命题:
x-1045
f(x)1221
①函数f(x)的值域为[0,2];
②函数f(x)在区间[0,2]和[4,5]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中是真命题的是②④.

查看答案和解析>>

同步练习册答案