精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{{\begin{array}{l}{x-1,x≤2}\\{2+{{log}_a}x,x>2}\end{array}}$(a>0且a≠1)的最大值为1,则a的取值范围是(  )
A.$[\frac{1}{2},1)$B.(0,1)C.$(0,\frac{1}{2}]$D.(1,+∞)

分析 对x进行分类讨论,当x≤2时,f(x)=x-1和当x>2时,2+logax≤1.由最大值为1得到a的取值范围.

解答 解:∵当x≤2时,f(x)=x-1,
∴f(x)max=f(2)=1
∵函数f(x)=$\left\{{\begin{array}{l}{x-1,x≤2}\\{2+{{log}_a}x,x>2}\end{array}}$(a>0且a≠1)的最大值为1
∴当x>2时,2+logax≤1.
∴$\left\{\begin{array}{l}{0<a<1}\\{lo{g}_{a}2≤-1}\end{array}\right.$,
解得a∈[$\frac{1}{2}$,1)
故选:A

点评 本题考查分类讨论以及由最大值为1得到结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某班从6名干部中(其中男生4人,女生2人),选3人参加学校的义务劳动.
(1)设所选3人中女生人数为ξ,求ξ的分布列及均值;
(2)求男生甲或女生乙被选中的概率;
(3)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为3的正方形,则该机器零件的体积为$27+\frac{9}{8}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{bx}{a{x}^{2}+c}$的图象在点(0,0)处的切线方程为y=9x,其中a>0,b,c∈R,且b+c=10
(1)求b,c的值及函数f(x)的单调区间;
(2)若在区间[1,2]上仅存在一个x0,使得f(x0)≥a,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sinx•cosx=-$\frac{1}{4}$,且$\frac{3π}{4}$<x<π,则sinx+cosx的值(  )
A.$-\frac{3}{4}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.f(x)=|sin2x+$\frac{1}{2}}$|的最小正周期是(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.利用浮力原理巧妙地称出了皇冠中黄金的重量的阿基米德,在他的墓碑上有一幅几何图案,如图所示,因为阿基米德很欣赏这三者的体积之比为V圆锥:V:V圆柱=1:2:3,他还得出球的表面积与它的外切圆柱的表面积之比等于它们的体积之比,都等于2:3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.己知x>$\frac{3}{2}$,则函数y=2x+$\frac{4}{2x-3}$的最小值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:
①若m⊥α,m?β,则α⊥β;
②若m⊥n,m⊥α,则n∥α;
③若α∩β=m,n∥m,且n?α,n?β,则n∥α且n∥β.
④若m∥α,α⊥β,则m⊥β.
其中真命题的个数是2.

查看答案和解析>>

同步练习册答案