分析 (1)ξ的所有可能取值为0,1,2,再根据题意分别求出其概率即可得到其分布列,进而求出其期望.
(2)根据题意求出其对立事件的概率,进而根据有关公式求出答案.
(3)记“男生甲被选中”为事件A,“女生乙被选中”为事件B,再求出事件A与事件A、B共同发生的概率,进而根据条件概率的公式求出答案.
解答 解:(1)ξ的所有可能取值为0,1,2,
所以依题意得:P(ξ=0)=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$,P(ξ=1)=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{3}{5}$,P(ξ=2)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
所以ξ的分布列为
| ξ | 0 | 1 | 2 |
| P | $\frac{1}{5}$ | $\frac{3}{5}$ | $\frac{1}{5}$ |
点评 本题主要考查等可能事件的概率与条件概率,以及离散型随机变量的分布列、期望与方差等知识点,属于中档题型,高考命题的趋向.
科目:高中数学 来源: 题型:选择题
| A. | 45° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{1}{2},1)$ | B. | (0,1) | C. | $(0,\frac{1}{2}]$ | D. | (1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com