精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=2cosx(cosx-sinx)最小正周期为π,当x∈[0,$\frac{π}{6}$]时,函数f(x)的最小值为$\frac{3-\sqrt{3}}{2}$.

分析 利用三角恒等变换化简函数的解析式,再利用余弦函数的周期性、定义域和值域,得出结论.

解答 解:函数f(x)=2cosx(cosx-sinx)=2cos2x-2sinxcosx=cos2x-sin2x+1=$\sqrt{2}$cos(2x+$\frac{π}{4}$)+1的最小正周期为$\frac{2π}{2}$=π,
当x∈[0,$\frac{π}{6}$]时,2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{7π}{12}$],cos$\frac{7π}{12}$=cos($\frac{π}{3}$+$\frac{π}{4}$)=cos$\frac{π}{3}$cos$\frac{π}{4}$-sin$\frac{π}{3}$sin$\frac{π}{4}$=$\frac{\sqrt{2}-\sqrt{6}}{4}$,
cos(2x+$\frac{π}{4}$)∈[$\frac{\sqrt{2}-\sqrt{6}}{4}$,$\frac{\sqrt{2}}{2}$],f(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$)+1∈[$\frac{3-\sqrt{3}}{2}$,2],
故答案为:π; $\frac{3-\sqrt{3}}{2}$.

点评 本题主要考查三角恒等变换,余弦函数的周期性、定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为PD上的动点,EH与平面PAD所成最大角的正切值为$\frac{\sqrt{6}}{2}$,求三棱锥B-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校分别从甲、乙、丙、丁4位学生和A、B、C、D4位老师中各随机选取1名代表去参加地区活动.
(Ⅰ)用甲、乙、丙、丁和A、B、C、D列举出所有可能结果;
(Ⅱ)事件T是“选出的两人既不含学生丙也不含老师D”,求事件T发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y满足约束条件$\left\{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}\right.$,则目标函数z=x-y的最小值为(  )
A.-4B.-3C.-1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知单调递增的等差数列{an}的前n项和为Sn,若S8=12,a3•a6=-18,则数列{an}的通项公式为an=3n-12;若数列{bn}的通项公式为bn=2n,则数列{abn}的前n项和Tn=6•2n-12n-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z满足z(1+i)=i2016,则|z|=(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某班从6名干部中(其中男生4人,女生2人),选3人参加学校的义务劳动.
(1)设所选3人中女生人数为ξ,求ξ的分布列及均值;
(2)求男生甲或女生乙被选中的概率;
(3)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+x-$\frac{1}{4}$,若其定义域为[a,a+1],值域为[-$\frac{1}{2}$,$\frac{1}{16}$],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{bx}{a{x}^{2}+c}$的图象在点(0,0)处的切线方程为y=9x,其中a>0,b,c∈R,且b+c=10
(1)求b,c的值及函数f(x)的单调区间;
(2)若在区间[1,2]上仅存在一个x0,使得f(x0)≥a,求实数a的值.

查看答案和解析>>

同步练习册答案