精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\frac{bx}{a{x}^{2}+c}$的图象在点(0,0)处的切线方程为y=9x,其中a>0,b,c∈R,且b+c=10
(1)求b,c的值及函数f(x)的单调区间;
(2)若在区间[1,2]上仅存在一个x0,使得f(x0)≥a,求实数a的值.

分析 (1))求出函数的导数,得到$\frac{b}{c}$=9,结合b+c=10,求出b,c的值即可;(2)通过讨论a的范围,求出函数的单调区间,得到函数的最大值,求出a即可.

解答 解:(1)f′(x)=$\frac{bc-a{bx}^{2}}{{({ax}^{2}+c)}^{2}}$,
∴f′(0)=$\frac{b}{c}$=9,而b+c=10,
解得:b=9,c=1,
∴f(x)=$\frac{9x}{{ax}^{2}+1}$,f′(x)=$\frac{9(1-{ax}^{2})}{{({ax}^{2}+1)}^{2}}$,
令f′(x)>0,解得:-$\frac{\sqrt{a}}{a}$<x<$\frac{\sqrt{a}}{a}$,
令f′(x)<0,解得:x>$\frac{\sqrt{a}}{a}$或x<-$\frac{\sqrt{a}}{a}$,
∴f(x)在(-∞,-$\frac{\sqrt{a}}{a}$)递减,在(-$\frac{\sqrt{a}}{a}$,$\frac{\sqrt{a}}{a}$)递增,在($\frac{\sqrt{a}}{a}$,+∞)递减;
(2)由(1)得:f(x)在(-$\frac{\sqrt{a}}{a}$,$\frac{\sqrt{a}}{a}$)递增,在($\frac{\sqrt{a}}{a}$,+∞)递减,
①a≥1时,$\frac{\sqrt{a}}{a}$≤1,f(x)在[1,2]递减,
∴f(x)max=f(1)=$\frac{9}{a+1}$=a,解得:a=$\frac{-1+\sqrt{37}}{2}$,
②0<a≤$\frac{1}{4}$时,$\frac{\sqrt{a}}{a}$≥2,f(x)在[1,2]递增,
∴f(x)max=f(2)=$\frac{18}{4a+1}$=a,无解,
③$\frac{1}{4}$<a<1即1<$\frac{\sqrt{a}}{a}$<2时,f(x)在[1,$\frac{\sqrt{a}}{a}$)递增,在($\frac{\sqrt{a}}{a}$,2]递减,
f(x)max=f($\frac{\sqrt{a}}{a}$)=$\frac{9}{2\sqrt{a}}$=a,无解,
综上,a=$\frac{-1+\sqrt{37}}{2}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=2cosx(cosx-sinx)最小正周期为π,当x∈[0,$\frac{π}{6}$]时,函数f(x)的最小值为$\frac{3-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,E为CD上任意一点.
(I)求证:B1E⊥AD1
(Ⅱ)若CD=$\sqrt{2}$a,是否存在这样的E点,使得AD1与平面B1AE成45°的角?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图,每个小格表示一个单位,则该几何体的侧面积为(  )
A.2$\sqrt{5}$πB.C.2π+2$\sqrt{5}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某四棱锥的三视图如图所示,则该四棱锥的体积是(  )
A.36B.30C.27D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.记n项正项数列为a1,a2,…,an,其前n项积为Tn,定义lg(T1•T2•…Tn)为“相对叠乘积”,如果有2013项的正项数列a1,a2,…,a2013的“相对叠乘积”为2013,则有2014项的数列10,a1,a2,…,a2013的“相对叠乘积”为(  )
A.2014B.2016C.3042D.4027

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{{\begin{array}{l}{x-1,x≤2}\\{2+{{log}_a}x,x>2}\end{array}}$(a>0且a≠1)的最大值为1,则a的取值范围是(  )
A.$[\frac{1}{2},1)$B.(0,1)C.$(0,\frac{1}{2}]$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某中学对男女学生是否喜爱古典音乐进行了一个调查,调查者对学校高三年级随机抽取了100名学生,调查结果如表:
喜爱不喜爱总计
男学生6080
女学生
总计7030
(1)完成如表,并根据表中数据,判断是否有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;
(2)从以上被调查的学生中以性别为依据采用分层抽样的方式抽取5名学生,再从这5名学生中随机抽取2名学生去某古典音乐会的现场观看演出,求正好有1名男生被抽中的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=2-k}\\{y=3-2k}{\;}\end{array}\right.$(k为参数),以原点O为极点,以x轴正半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.圆C的极坐标方程为ρ=2sinθ.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B,若点M的坐标为(2,3).求|MA|•|MB|的值.

查看答案和解析>>

同步练习册答案