精英家教网 > 高中数学 > 题目详情
3.已知sinx•cosx=-$\frac{1}{4}$,且$\frac{3π}{4}$<x<π,则sinx+cosx的值(  )
A.$-\frac{3}{4}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

分析 先由条件判断sinx+cosx<0,再求得 (sinx+cosx)2 的值,可得sinx+cosx的值.

解答 解:∵sinx•cosx=-$\frac{1}{4}$,且$\frac{3π}{4}$<x<π,∴sinx>0,cosx<0,|sinx|<|cosx|,∴sinx+cosx<0.
∵(sinx+cosx)2=1+2sinxcosx=1-$\frac{1}{2}$=$\frac{1}{2}$,∴sinx+cosx=-$\frac{\sqrt{2}}{2}$,
故选:C.

点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列命题中真命题的个数为(  )
①两个变量x,y的相关系数r越大,则变量x,y的相关性越强;
②从4个男生3个女生中选取3个人,则至少有一个女生的选取种数为31种.
③命题p:?x∈R,x2-2x-1>0的否定为?p:?x0∈R,x02-2x0-1≤0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,曲线C的参数方程为:$\left\{{\begin{array}{l}{x=1+\sqrt{3}cosφ}\\{y=\sqrt{3}sinφ}\end{array}}$(φ是参数方程,0≤φ≤π).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)直线l1的极坐标方程是2ρsin(θ+$\frac{π}{3}$)+3$\sqrt{3}$=0,直线l2:θ=$\frac{π}{3}$(ρ∈R)与曲线C的交点为P,与直线l1的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某四棱锥的三视图如图所示,则该四棱锥的体积是(  )
A.36B.30C.27D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}的公差为d,前n项的和为Sn,若a4=4,a2+a8=10,则d=1,an=n,Sn=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{{\begin{array}{l}{x-1,x≤2}\\{2+{{log}_a}x,x>2}\end{array}}$(a>0且a≠1)的最大值为1,则a的取值范围是(  )
A.$[\frac{1}{2},1)$B.(0,1)C.$(0,\frac{1}{2}]$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图是一个几何体的三视图,则该几何体的体积是15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列不等式的证明过程:
①若a,b∈R,则$\frac{b}{a}$+$\frac{a}{b}$≥2$\sqrt{\frac{b}{a}•\frac{a}{b}}$=2;
②若x,y∈R,则|x+$\frac{4}{y}$|=|x|+$\frac{4}{|y|}$≥2$\sqrt{|x|•\frac{4}{|y|}}$;
③若a,b∈R,ab<0,则$\frac{b}{a}$+$\frac{a}{b}$=-[(-$\frac{b}{a}$)+(-$\frac{a}{b}$)]≤-2$\sqrt{(-\frac{b}{a})•(-\frac{a}{b})}$=-2.
其中正确的序号是③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=cosxB.y=e-xC.y=-x2+1D.y=lg|x|

查看答案和解析>>

同步练习册答案