精英家教网 > 高中数学 > 题目详情
18.已知等差数列{an}的公差为d,前n项的和为Sn,若a4=4,a2+a8=10,则d=1,an=n,Sn=$\frac{n(n+1)}{2}$.

分析 直接由a4=4,a2+a8=10,求出首项和公差,再由等差数列的通项公式和前n项公式计算即可.

解答 解:由等差数列{an}的公差为d,
得a4=a1+3d=4,a2+a8=a1+d+a1+7d=2a1+8d=10,
解得a1=1,d=1.
∴an=1+(n-1)×1=n;
${S}_{n}=\frac{n({a}_{1}+{a}_{n})}{2}=\frac{n(n+1)}{2}$.
故答案为:1,n,$\frac{n(n+1)}{2}$.

点评 本题考查了等差数列的通项公式和前n项公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)及圆O:x2+y2=a2,过点B(0,a)与椭圆相切的直线L交圆O于点A,若∠AOB=60°,则椭圆的离心率$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知一个棱长为$\sqrt{2}$的正四面体内接于球,则该球的表面积是3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{4}{3}$B.1C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,网格纸上小正方形的边长为1,粗线画出的为某几何体的三视图,则此几何体的体积为(  )
A.$\frac{2}{3}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sinx•cosx=-$\frac{1}{4}$,且$\frac{3π}{4}$<x<π,则sinx+cosx的值(  )
A.$-\frac{3}{4}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.
(Ⅰ)求证:EF⊥平面PAC; 
(Ⅱ)若M为PD的中点,求证:ME∥平面PAB;
(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求$\frac{PM}{PD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,斜三棱柱ABC-A1B1C1中,侧面ACC1A1与侧面BCC1B1都是菱形,∠ACC1=∠BCC1=120°,AC=2.
(Ⅰ)求证:CC1⊥A1B1;(Ⅱ)若A1B1=$\sqrt{6}$,求直线B1C1与平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.给出以下四个结论:
(1)函数f(x)=$\frac{x-1}{2x+1}$的对称中心是(-$\frac{1}{2}$,-$\frac{1}{2}$);
(2)若关于x的方程x-$\frac{1}{x}$+k=0在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0的两侧,则 3b-2a>1;
(4)若将函数f(x)=sin(2x-$\frac{π}{3}$)的图象向右平移φ(φ>0)个单位后变为偶函数,则φ的最小值是$\frac{π}{12}$,
其中正确的结论是:(3)(4).

查看答案和解析>>

同步练习册答案