精英家教网 > 高中数学 > 题目详情
13.f(x)=|sin2x+$\frac{1}{2}}$|的最小正周期是(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.

分析 根据f(x)=|sin2x+$\frac{1}{2}}$|的图象,可得f(x)=|sin2x+$\frac{1}{2}}$|的周期即y=sin2x的周期,即$\frac{2π}{ω}$.

解答 解:根据f(x)=|sin2x+$\frac{1}{2}}$|的图象,如图所示:
可得f(x)=|sin2x+$\frac{1}{2}}$|的周期,即y=sin2x的周期为$\frac{2π}{2}$=π,
故选:A.

点评 本题主要考查正弦函数的周期性,利用了函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数y=sinx在区间[0,2π]上的图象与x轴的交点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图,每个小格表示一个单位,则该几何体的侧面积为(  )
A.2$\sqrt{5}$πB.C.2π+2$\sqrt{5}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.记n项正项数列为a1,a2,…,an,其前n项积为Tn,定义lg(T1•T2•…Tn)为“相对叠乘积”,如果有2013项的正项数列a1,a2,…,a2013的“相对叠乘积”为2013,则有2014项的数列10,a1,a2,…,a2013的“相对叠乘积”为(  )
A.2014B.2016C.3042D.4027

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{{\begin{array}{l}{x-1,x≤2}\\{2+{{log}_a}x,x>2}\end{array}}$(a>0且a≠1)的最大值为1,则a的取值范围是(  )
A.$[\frac{1}{2},1)$B.(0,1)C.$(0,\frac{1}{2}]$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足a1=$\frac{3}{2}$且an=$\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}\begin{array}{l}{\;}$ (n∈N,n≥2).
(1)求数列{an}的通项公式;
(2)求证:当n≥2时,$\frac{a_1}{1}$+$\frac{a_2}{2}$+$\frac{a_3}{3}$+…+$\frac{a_n}{n}$-n<$\frac{11}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某中学对男女学生是否喜爱古典音乐进行了一个调查,调查者对学校高三年级随机抽取了100名学生,调查结果如表:
喜爱不喜爱总计
男学生6080
女学生
总计7030
(1)完成如表,并根据表中数据,判断是否有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;
(2)从以上被调查的学生中以性别为依据采用分层抽样的方式抽取5名学生,再从这5名学生中随机抽取2名学生去某古典音乐会的现场观看演出,求正好有1名男生被抽中的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.x>0时,函数y=x+$\frac{1}{x}$-1的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.根据如图所示的程序语句,若输入的x值为3,则输出的y值为(  )
A.2B.3C.6D.27

查看答案和解析>>

同步练习册答案