精英家教网 > 高中数学 > 题目详情
18.已知数列{an}满足a1=$\frac{3}{2}$且an=$\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}\begin{array}{l}{\;}$ (n∈N,n≥2).
(1)求数列{an}的通项公式;
(2)求证:当n≥2时,$\frac{a_1}{1}$+$\frac{a_2}{2}$+$\frac{a_3}{3}$+…+$\frac{a_n}{n}$-n<$\frac{11}{16}$.

分析 (1)通过对${a_n}=\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}(n≥2,n∈N)$变形可知$\frac{n}{a_n}-1=\frac{1}{3}(\frac{n-1}{{{a_{n-1}}}}-1)$,进而计算可得结论;
(2)当n≥2时通过放缩可知$\frac{{3}^{n}}{{3}^{n}-1}$≤1+$\frac{1}{8×{3}^{n-2}}$,进而利用分组求和法计算即得结论.

解答 (1)解:∵${a_n}=\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}(n≥2,n∈N)$,
∴$\frac{n}{a_n}=\frac{n-1}{{3{a_{n-1}}}}+\frac{2}{3}$,即$\frac{n}{a_n}-1=\frac{1}{3}(\frac{n-1}{{{a_{n-1}}}}-1)$,
所以数列$\{\frac{n}{a_n}-1\}$是以$\frac{1}{a_1}-1$为首项、$\frac{1}{3}$为公比的等比数列,
又∵a1=$\frac{3}{2}$,
∴$\frac{n}{a_n}-1=-{(\frac{1}{3})^n}$,即${a_n}=\frac{{n{3^n}}}{{{3^n}-1}}$;
(2)证明:当n≥2时,$\frac{3^n}{{{3^n}-1}}=\frac{{{3^n}-1+1}}{{{3^n}-1}}=1+\frac{1}{{{3^n}-1}}≤1+\frac{1}{{{3^n}(1-\frac{1}{3^n})}}≤1+\frac{1}{{{3^n}(1-\frac{1}{3^2})}}≤1+\frac{9}{{8×{3^n}}}=1+\frac{1}{{8×{3^{n-2}}}}$,
$\begin{array}{l}\frac{a_1}{1}+\frac{a_2}{2}+\frac{a_3}{3}+…+\frac{a_n}{n}-n\\=\frac{3}{{{3^1}-1}}+\frac{3^2}{{{3^2}-1}}+\frac{3^3}{{{3^3}-1}}+…+\frac{3^n}{{{3^n}-1}}-n\end{array}$
=$(1+\frac{1}{{{3^1}-1}})+(1+\frac{1}{{{3^2}-1}})+(1+\frac{1}{{{3^3}-1}})+(1+\frac{1}{{{3^4}-1}})…+(1+\frac{1}{{{3^n}-1}})-n$
$≤\frac{1}{2}+\frac{1}{8}+\frac{1}{8×3}+\frac{1}{{8×{3^2}}}+…+\frac{1}{{8×{3^{n-2}}}}$
=$\frac{1}{2}+\frac{{\frac{1}{8}(1-{{(\frac{1}{3})}^{n-1}})}}{{1-\frac{1}{3}}}$
$≤\frac{1}{2}+\frac{3}{16}$=$\frac{11}{16}$.

点评 本题是一道关于数列与不等式的综合题,考查放缩法、分组求和法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知an=logn+1(n+2)(n∈N*),观察下列算式:
a1•a2=log23•log34=$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$=2;
a1•a2•a3•a4•a5•a6=log23•log34•…•${log}_{{7}^{8}}$=$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$•…•$\frac{lg8}{lg7}$=3…;
若a1•a2•a3…am=2016(m∈N*),则m的值为22016-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知某个几何体的三视图如下,根据图中标出的尺寸,可得这个几何体的体积是(  )
A.4B.$\frac{16}{3}$C.8D.$\frac{32}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知p:x<-2或x>10;q:1-m≤x≤1+m2;¬p是q的充分而不必要条件,则实数m的取值范围(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.f(x)=|sin2x+$\frac{1}{2}}$|的最小正周期是(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设f(x)是定义在R上的奇函数,当x≥0时,f(x)=$\frac{1}{2}$(|x-$\frac{m}{3}}$|+|x-$\frac{2m}{3}}$|-m)(m>0),若对任意的实数x,都有f(x-1)≤f(x)成立,则m的最大值是0<m≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y满足x2+y2+2x=0,则x+y的最小值为-$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等差数列{an}的前n项和为Sn,且S3=6,a1=1,则公差d等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.根据如图所示的程序语句,若输入的值为3,则输出的y值为2.

查看答案和解析>>

同步练习册答案