分析 根据已知条件an+1+3an=0得到$\frac{{a}_{n+1}}{{a}_{n}}$=-3,可知数列{an}是首项为a1=-1、公比为-3的等比数列,结合等比数列的通项公式和前n项和公式进行解答即可.
解答 解:∵an+1+3an=0,
∴$\frac{{a}_{n+1}}{{a}_{n}}$=-3,
又∵a1=-1,
∴数列{an}是首项为a1=-1、公比q=-3的等比数列,
∴an=a1•qn-1=-1×(-3)n-1=-(-3)n-1.
Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{-1×[1-(-3)^{n}]}{1-(-3)}$=-$\frac{1-(-3)^{n}}{4}$.
点评 本题考查了等比数列的基本知识,考查了学生的计算能力,解题时要认真审题,仔细解答,避免错误,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}{a^2}$ | B. | $-\frac{{\sqrt{3}}}{2}{a^2}$ | C. | $\frac{1}{2}{a^2}$ | D. | $\frac{{\sqrt{3}}}{2}{a^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若{dn}满足dn=$\frac{{{b_1}+2{b_2}+3{b_3}+…+n{b_n}}}{1+2+3+…n}$,则{dn}也是等比数列 | |
| B. | 若{dn}满足dn=$\frac{{{b_1}•2{b_2}•3{b_3}•…•n{b_n}}}{1•2•3•…•n}$,则{dn}也是等比数列 | |
| C. | 若{dn}满足${d_n}={[{b_1}•(2{b_2})•(3{b_3})•…•(n{b_n})]^{\frac{1}{1+2+…+n}}}$,则{dn}也是等比数列 | |
| D. | 若{dn}满足${d_n}={[{b_1}•{b_2}^2•{b_3}^3•…•{b_n}^n]^{\frac{1}{1+2+…+n}}}$,则{dn}也是等比数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com