精英家教网 > 高中数学 > 题目详情

设函数f(x)=lnx,g(x)=ax+数学公式,函数f(x)的图象与x轴的交点也在函数g(x)的图象上,且在此点有公切线.
(Ⅰ)求a、b的值;
(Ⅱ)试比较f(x)与g(x)的大小.

解:(Ⅰ)由f(x)=lnx=0,得x=1,所以函数f(x)=lnx的图象与x轴的交点坐标是(1,0),
依题意,得g(1)=a+b=0 ①
,∵f(x)与g(x)在点(1,0)处有公切线,
∴g(1)=f(1)=1,即a-b=1 ②
由①、②得a=
(Ⅱ)令F(x)=f(x)-g(x),

函数F(x)的定义域为(0,+∞).
≤0,
∴函数F(x)在(0,+∞)上为减函数.
当0<x<1时,F(x)>F(1)=0,即f(x)>g(x);
当x=1时,F(x)=F(1)=0,即f(x)=g(x);
当x>1时,F(x)<F(1)=0,即f(x)<g(x).
综上可知,当0<x≤1时,f(x)≥g(x);当x>1时,f(x)<g(x).
分析:(Ⅰ)首先求出函数f(x)的图象与x轴的交点坐标(1,0),代入函数g(x)后得到关于a,b的等式,再由两函数在(1,0)处由公切线,得到关于a,b的另一等式,两式联立即可求得a,b的值;
(Ⅱ)令辅助函数F(x)=f(x)-g(x),把函数f(x)和g(x)的解析式代入,整理后求出其导函数,由导函数可知F(x)在定义域(0,+∞)内是减函数,然后分0<x<1,x=1,x>1进行大小比较.
点评:本题考查了利用导数研究曲线上某点的切线方程,训练了构造函数法比较两个函数值的大小,考查了分类讨论得数学思想方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于ln
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设函数f(x)=ln(1+x)-
2x
x+2
,证明:当x>0时,f(x)>0;
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为P.证明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)设函数f(x)=ln(x2-x-6)的定义域为集合A,集合B={x|
5x+1
>1}.请你写出一个一元二次不等式,使它的解集为A∩B,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2(a>
2
)

(1)若a=
3
2
,解关于x不等式f(e
x
-
3
2
)<ln2+
1
4

(2)证明:关于x的方程2x2+2ax+1=0有两相异解,且f(m)和f(n)分别是函数f(x)的极小值和极大值(m,n为该方程两根,且m>n).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+2x2
(1)若当x=-1时,f(x)取得极值,求a的值;
(2)在(1)的条件下,方程ln(x+a)+2x2-m=0恰好有三个零点,求m的取值范围;
(3)当0<a<1时,解不等式f(2x-1)<lna.

查看答案和解析>>

同步练习册答案