精英家教网 > 高中数学 > 题目详情
对于函数f(x)=
sinπx,   x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
,有下列4个命题:
①任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②f(x)=2kf(x+2k)(k∈N*),对于一切x∈[0,+∞)恒成立;
③函数y=f(x)-ln(x-1)有3个零点;
④对任意x>0,不等式f(x)≤
k
x
恒成立,则实数k的取值范围是[
9
8
,+∞).
则其中所有真命题的序号是
 
考点:分段函数的应用
专题:综合题,数形结合,函数的性质及应用
分析:作出f(x)=
sinπx,   x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
的图象,利用图象可得结论.
解答: 解:f(x)=
sinπx,   x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
的图象如图所示:
①f(x)的最大值为1,最小值为-1,∴任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立,正确;
②f(
1
2
)=2f(
1
2
+2)=4f(
1
2
+4)=8f(
1
2
+6)≠8f(
1
2
+8),故不正确;
③如图所示,函数y=f(x)-ln(x-1)有3个零点;
④把(
5
2
1
2
)代入,可得k>
9
8

故答案为:①③.
点评:本题考查分段函数的应用,考查数形结合的数学思想,正确作出函数的图象是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4
3
,半径小于5.
(1)求直线PQ与圆C的方程;
(2)若直线l∥PQ,直线l与PQ交于点A、B,且以AB为直径的圆经过坐标原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线
x=-t
y=
3
t
(t为参数)与曲线C1:ρ=4sinθ异于点O的交点为A,与曲线C2:ρ=2sinθ异于点O的交点为B,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=-8x上一点,设P到此抛物线准线的距离是d1,到直线x+y-10=0的距离是d2,则d1+d2的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1的左焦点为F1,右顶点为A,上顶点为B.若∠F1BA=90°,则椭圆的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B分别是直线y=
3
3
x和y=-
3
3
x上的两个动点,线段AB长为2
3
,P是AB的中点,则动点P的轨迹C的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某区有7条南北向街道,5条东西向街道(如图).则从A点走到B点最短的走法有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x2+1,则f(x)在点(1,1)处的切线的倾斜角为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

同步练习册答案