精英家教网 > 高中数学 > 题目详情
4.等比数列{an}中,若a1=3,a5=75,则a3=(  )
A.15B.±15C.39D.$\frac{225}{2}$

分析 利用等比数列的通项公式即可得出.

解答 解:设等比数列{an}的公比为q,
∵a1=3,a5=75,
∴75=3q4
解得q2=5.
则a3=3q2=15.
故选:A.

点评 本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知m是4和16的等差中项,则m的值是(  )
A.8B.-8C.10D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1-x}{1+x}$.
(1)证明:f(x)在x∈(0,+∞)上单调递减;
(2)设g(x)=log2f(x),x∈(0,1),求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=2x-2-x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4-x)>0恒成立,则实数t的取值范围是(-3.+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a,b∈R,且a>b,则下列不等式恒成立的是(  )
A.a2>b2B.$\frac{a}{b}$>1C.lg(a-b)>0D.($\frac{1}{2}$)a<($\frac{1}{2}$)b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的定义域:
(1)f(x)=$\frac{x^0}{|x+1|-2}$
(2)f(x)=$\sqrt{x+3}+\frac{1}{x+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.下列命题中,判断条件q是条件p的什么条件:
(1)p:|x|=|y|,q:x=y;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出下列四个命题:
①各侧面都是全等四边形的棱柱一定是正棱柱;
②对角面是全等矩形的六面体一定是长方体;
③棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥;
④长方体一定是正四棱柱.
其中正确的命题个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设x,y满足约束条件$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}$,目标函数z=ax+by(a>0,b>0).
(Ⅰ)若z的最大值为12,求$\frac{2}{a}$+$\frac{3}{b}$的最小值.
(Ⅱ)若z的最大值不大于12,求a2+b2+2(b-a)的取值范围.

查看答案和解析>>

同步练习册答案