精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=2x-2-x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4-x)>0恒成立,则实数t的取值范围是(-3.+∞).

分析 通过判定函数f(x)=2x-2-x)=2x-$(\frac{1}{2})$x在R上单调递增、奇函数,脱掉”f“,转化为恒成立问题,分离参数求解.

解答 解:∵函数f(x)=2x-2-x)=2x-$(\frac{1}{2})$x在R上单调递增,又∵f(-x)=-(2x-2-x)=-f(x),故f(x)是奇函数,若对任意的x∈[1,3],不等式f(x2+tx)+f(4-x)>0恒成立,⇒对任意的x∈[1,3],不等式f(x2+tx)>f(-4+x)恒成立,
⇒对任意的x∈[1,3],x2+(t-1)x+4>0⇒(t-1)x>-x2-4⇒t-1>-(x+$\frac{4}{x})$,
∵$g(x)=x+\frac{4}{x}≥2\sqrt{x•\frac{4}{x}}=4…(x=2时取等号)$,∴t-1>-4,即t>-3.
故答案为:(-3.+∞)

点评 本题考查了函数的单调性、奇函数,恒成立问题,分离参数法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,椭圆C:$\frac{x^2}{9}$+$\frac{y^2}{b^2}$=1(0<b<3)的右焦点为F,P为椭圆上一动点,连接PF交椭圆于Q点,且|PQ|的最小值为$\frac{8}{3}$.
(1)求椭圆方程;
(2)若$\overrightarrow{PF}$=$2\overrightarrow{FQ}$,求直线PQ的方程;
(3)M,N为椭圆上关于x轴对称的两点,直线PM,PN分别与x轴交于R,S,求证:|OR|•|OS|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知角α的终边经过点P(-x,-6),且cosα=$\frac{4}{5}$,则x的值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a=log0.60.5,b=ln0.5,c=0.60.5,则a,b,c从小到大的关系(用“<”号连接)是b<c<a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.光明超市某种商品11月份(30天,11月1日为第一天)的销售价格P(单位:元)与时间t(单位:天,其中)组成有序实数对(t,P),点(t,P)落在如图所示的线段上.该商品日销售量Q(单位:件)与时间t(单位:天,其中t∈N)满足一次函数关系,Q与t的部分数据如表所示.
第t天10172130
Q(件)180152136100
(1)根据图象写出销售价格与时间t的函数关系式P=f(t).
(2)请根据表中数据写出日销售量Q与时间t的函数关系式Q=g(t).
(3)设日销售额为M(单位:元),请求出这30天中第几日M最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于两个定义域相同的函数f(x)、g(x),若存在实数m,n,使h(x)=mf(x)+ng(x),则称函数f(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求$\frac{a}{b}$的取值范围;
(3)利用“基函数f(x)=log4(4x+1),g(x)=x-1)”生成一个函数h(x),使得h(x)满足:
①是偶函数,②有最小值1,求h(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等比数列{an}中,若a1=3,a5=75,则a3=(  )
A.15B.±15C.39D.$\frac{225}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知△OFQ的面积为S,且$\overrightarrow{OF}$•$\overrightarrow{FQ}$=1,若$\frac{1}{2}$<S<2,则向量$\overrightarrow{OF}$与$\overrightarrow{FQ}$夹角θ的正切值的取值范围是(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{{{3^x}-{2^{-x}}}}{{{3^x}+{2^{-x}}}}$.
(1)判断f(x)的单调性,并证明; 
(2)写出f(x)的值域.
(3)若g(x)=$\left\{\begin{array}{l}f(x),x>0\\ 2ax+a-1,x≤0\end{array}$为R上的增函数,写出实数a的取值范围.

查看答案和解析>>

同步练习册答案