精英家教网 > 高中数学 > 题目详情
14.已知a=log0.60.5,b=ln0.5,c=0.60.5,则a,b,c从小到大的关系(用“<”号连接)是b<c<a.

分析 利用指数与对数函数的单调性即可得出.

解答 解:∵a=log0.60.5>log0.60.6=1,b=ln0.5<0,c=0.60.5∈(0,1),
则a,b,c从小到大的关系是b<c<a.
故答案为:b<c<a.

点评 本题考查了指数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+(4a-3)x+3a
(1)当a=1,x∈[-1,1]时,求函数f(x)的值域;
(2)已知a>0且a≠1,若函数g(x)=$\left\{\begin{array}{l}f(x),x<0\\{log_a}(x+1)+1,x≥0\end{array}$为R上的减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆O:x2+y2=16和点M(1,2$\sqrt{2}$),过点M的圆的两条弦AC,BD互相垂直,则四边形ABCD面积的最大值(  )
A.4$\sqrt{30}$B.$\sqrt{23}$C.23D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在区间[0,2π)内,与角$-\frac{3π}{4}$终边相同的角是$\frac{5π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1-x}{1+x}$.
(1)证明:f(x)在x∈(0,+∞)上单调递减;
(2)设g(x)=log2f(x),x∈(0,1),求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)计算:${(2\frac{1}{4})^{\frac{1}{2}}}-{(-\frac{1}{2})^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(\frac{3}{2})^{-2}}+{(0.125)^{\frac{1}{3}}}$
(2)${log_{\sqrt{3}}}9+{2^{\frac{1}{{{{log}_3}2}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=2x-2-x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4-x)>0恒成立,则实数t的取值范围是(-3.+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的定义域:
(1)f(x)=$\frac{x^0}{|x+1|-2}$
(2)f(x)=$\sqrt{x+3}+\frac{1}{x+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{{n}^{2}}{2}$(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anan+1,Sn为数列{bn}的前n项和,求Sn

查看答案和解析>>

同步练习册答案