精英家教网 > 高中数学 > 题目详情
5.已知圆O:x2+y2=16和点M(1,2$\sqrt{2}$),过点M的圆的两条弦AC,BD互相垂直,则四边形ABCD面积的最大值(  )
A.4$\sqrt{30}$B.$\sqrt{23}$C.23D.25

分析 连接OA、OD作OE⊥AC OF⊥BD垂足分别为E、F,推导出四边形OEPF为矩形,由OA=OC=4,OM=3,求出AC2+BD2=92,由任意对角线互相垂直四边形的面积等于对角线乘积的$\frac{1}{2}$,求出当AC=BD时,四边形ABCD的面积取最大值.

解答 解:如图,连接OA、OD作OE⊥AC OF⊥BD垂足分别为E、F
∵AC⊥BD
∴四边形OEPF为矩形
已知OA=OC=4,OM=3,
设OE为x,则OF=EP=$\sqrt{O{M}^{2}-O{E}^{2}}$=$\sqrt{9-{x}^{2}}$,
∴AC=2AE=2$\sqrt{O{A}^{2}-O{E}^{2}}$=2$\sqrt{16-{x}^{2}}$,
BD=2DF=2$\sqrt{O{D}^{2}-O{F}^{2}}$=2$\sqrt{{x}^{2}+7}$,
∴AC2+BD2=92,
由此可知AC与BD两线段的平方和为定值,
又∵任意对角线互相垂直四边形的面积等于对角线乘积的$\frac{1}{2}$,
当AC=BD=$\sqrt{46}$时
四边形ABCD的面积最大值$\frac{1}{2}×AC×BD=\frac{1}{2}×\sqrt{46}×\sqrt{46}$=23.
故选:B.

点评 本题考查四边形的面积的最大值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设f(x)=x3+bx2+cx+d,又k是一个常数,已知k<0或k>4时,f(x)-k=0只有一个实根,当0<k<4时,f(x)-k=0有三个相异实根,给出下列命题:
①f(x)-4=0和f'(x)=0有一个相同的实根;
②f(x)=0和f'(x)=0有一个相同的实根;
③f(x)+3=0的任一实根大于f(x)-1=0的任一实根;
④f(x)+5=0的任一实根小于于f(x)-2=0的任一实根;
其中正确命题的个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,椭圆C:$\frac{x^2}{9}$+$\frac{y^2}{b^2}$=1(0<b<3)的右焦点为F,P为椭圆上一动点,连接PF交椭圆于Q点,且|PQ|的最小值为$\frac{8}{3}$.
(1)求椭圆方程;
(2)若$\overrightarrow{PF}$=$2\overrightarrow{FQ}$,求直线PQ的方程;
(3)M,N为椭圆上关于x轴对称的两点,直线PM,PN分别与x轴交于R,S,求证:|OR|•|OS|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.比较大小:(x-3)2>x2-6x+8(填入“>”,“<”,“=”之一).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c且a=1,∠B=45°,S△ABC=2,求边长b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设正实数x,y满足x+y=1,则x2+y2+$\sqrt{xy}$的取值范围为$[1,\frac{9}{8}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知角α的终边经过点P(-x,-6),且cosα=$\frac{4}{5}$,则x的值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a=log0.60.5,b=ln0.5,c=0.60.5,则a,b,c从小到大的关系(用“<”号连接)是b<c<a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知△OFQ的面积为S,且$\overrightarrow{OF}$•$\overrightarrow{FQ}$=1,若$\frac{1}{2}$<S<2,则向量$\overrightarrow{OF}$与$\overrightarrow{FQ}$夹角θ的正切值的取值范围是(1,4).

查看答案和解析>>

同步练习册答案