精英家教网 > 高中数学 > 题目详情
15.设f(x)=x3+bx2+cx+d,又k是一个常数,已知k<0或k>4时,f(x)-k=0只有一个实根,当0<k<4时,f(x)-k=0有三个相异实根,给出下列命题:
①f(x)-4=0和f'(x)=0有一个相同的实根;
②f(x)=0和f'(x)=0有一个相同的实根;
③f(x)+3=0的任一实根大于f(x)-1=0的任一实根;
④f(x)+5=0的任一实根小于于f(x)-2=0的任一实根;
其中正确命题的个数为(  )
A.3B.2C.1D.0

分析 由已知中f(x)=x3+bx2+cx+d,当k<0或k>4时,f(x)-k=0只有一个实根;当0<k<4时,f(x)-k=0有三个相异实根,故函数即为极大值,又有极小值,且极大值为4,极小值为0,分析出函数简单的图象和性质后,逐一分析四个结论的正误,即可得到答案.

解答 解:∵f(x)=x3+bx2+cx+d,
当k<0或k>4时,f(x)-k=0只有一个实根;
当0<k<4时,f(x)-k=0有三个相异实根,
故函数即有极大值,又有极小值,且极大值为4,极小值为0
故f(x)-4=0与f'(x)=0有一个相同的实根,即极大值点,故(1)正确;
f(x)=0与f'(x)=0有一个相同的实根,即极小值点,故(2)正确;
f(x)+3=0有一实根且小于函数最小的零点,f(x)-1=0有三个实根均大于函数最小的零点,故(3)错误;
f(x)+5=0有一实根且小于函数最小的零点,f(x)-2=0有三个实根均大于函数最小的零点,故(4)正确;
故选:A.

点评 本题考查了函数与方程的思想,把零点问题转化为函数交点问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.计算下列各式的值:
(1)0.64${\;}^{-\frac{1}{2}}$-(-$\frac{1}{8}$)0+8${\;}^{\frac{2}{3}}$+($\frac{9}{16}$)${\;}^{\frac{1}{2}}$
(2)lg22+lg2•lg5+lg5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若几何体的三视图如图所示,则该几何体的表面积为2+$\frac{1+\sqrt{5}}{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|2x-1|
(1)解关于x的不等式f(2x)≤f(x+1)
(2)若实数a,b满足a+b=2,求f(a2)+f(b2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知F为抛物线y2=2x的焦点,点A、B在抛物线上且位于x轴的两侧,$\widehat{OA}$•$\widehat{OB}$=3(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是3$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD是正三角形,且平面PAD⊥平面ABCD,O为棱AD的中点.
(1)求证:PO⊥平面ABCD;
(2)求二面角A-PD-B的大小;
(3)求C点到平面PDB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l经过两条直线2x-y-3=0和4x-3y-5=0的交点,且与直线x+y-2=0垂直.
(1)求直线l的方程;
(2)若圆C过点(1,0),且圆心在x轴的正半轴上,直线l被该圆所截得的弦长为$2\sqrt{2}$,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+(4a-3)x+3a
(1)当a=1,x∈[-1,1]时,求函数f(x)的值域;
(2)已知a>0且a≠1,若函数g(x)=$\left\{\begin{array}{l}f(x),x<0\\{log_a}(x+1)+1,x≥0\end{array}$为R上的减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆O:x2+y2=16和点M(1,2$\sqrt{2}$),过点M的圆的两条弦AC,BD互相垂直,则四边形ABCD面积的最大值(  )
A.4$\sqrt{30}$B.$\sqrt{23}$C.23D.25

查看答案和解析>>

同步练习册答案