分析 设出A,B的坐标,根据数量积列出方程得出A,B坐标的关系,求出直线AB与x轴的交点坐标,得出△ABO与△AFO面积之和关于y1的函数,利用基本不等式得出面积和的最小值.
解答 解:设A($\frac{{{y}_{1}}^{2}}{2}$,y1),B($\frac{{{y}_{2}}^{2}}{2}$,y2),
则$\overrightarrow{OA}•\overrightarrow{OB}$=$\frac{{{y}_{1}}^{2}{{y}_{2}}^{2}}{4}$+y1y2=3,
∴y1y2=-6或y1y2=2(舍).
∴y2=$\frac{-6}{{y}_{1}}$.
直线AB的方程为$\frac{y-{y}_{1}}{{y}_{2}-{y}_{1}}=\frac{x-\frac{{{y}_{1}}^{2}}{2}}{\frac{{{y}_{2}}^{2}}{2}-\frac{{{y}_{1}}^{2}}{2}}$,
令y=0得$\frac{-{y}_{1}}{{y}_{2}-{y}_{1}}$=$\frac{x-\frac{{{y}_{1}}^{2}}{2}}{\frac{{{y}_{2}}^{2}}{2}-\frac{{{y}_{1}}^{2}}{2}}$,解得x=-$\frac{{y}_{1}{y}_{2}}{2}$=3,
∴直线AB交x轴于点(3,0).
不妨设y1>0,y2<0,
则S△ABO=$\frac{1}{2}$×3×y1-$\frac{1}{2}×3×{y}_{2}$=$\frac{3}{2}$(y1-y2),
又F($\frac{1}{2}$,0),∴S△AFO=$\frac{1}{2}×\frac{1}{2}×{y}_{1}$=$\frac{{y}_{1}}{4}$,
∴S△ABO+S△AFO=$\frac{7{y}_{1}}{4}$-$\frac{3}{2}$y2=$\frac{7{y}_{1}}{4}$+$\frac{9}{{y}_{1}}$≥2$\sqrt{\frac{7{y}_{1}}{4}•\frac{9}{{y}_{1}}}$=3$\sqrt{7}$.
故答案为:3$\sqrt{7}$.
点评 本题考查了抛物线与直线的位置关系,平面向量的数量积运算,基本不等式的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{5}{2}$) | B. | ($\frac{5}{2}$,+∞) | C. | (-∞,-1) | D. | (6,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com