分析 (I)令a=b=1即可得出关于f(1)的方程,求出f(1);
(II)设0<x1<x2,则由函数性质①可得出f(x2)-f(x1)=f($\frac{{x}_{2}}{{x}_{1}}$),由函数性质②得出f($\frac{{x}_{2}}{{x}_{1}}$)<0,故而有f(x2)<f(x1);
(III)根据函数性质可得f($\frac{1}{4}$)=2,利用函数的单调性和定义域列出不等式组解出x.
解答 解:(Ⅰ)令a=b=1得f(1)+f(1)=f(1),∴f(1)=0.
(Ⅱ)设x1,x2∈(0,+∞),且x1<x2,则f(x2)-f(x1)=f($\frac{{x}_{2}}{{x}_{1}}$),
∵$\frac{{x}_{2}}{{x}_{1}}$>1,∴f($\frac{{x}_{2}}{{x}_{1}}$)<0,
∴f(x2)-f(x1)<0,即f(x2)<f(x1).
∴f(x)在(0,+∞)上是减函数
(Ⅲ)∵f(2)=-1,∴f(4)=2f(2)=-2,
又f(4)+f($\frac{1}{4}$)=f(1)=0,
∴f($\frac{1}{4}$)=-f(4)=2,
∵f(x)是定义在(0,+∞)上的减函数,
∴$\left\{\begin{array}{l}{3x-1<\frac{1}{4}}\\{3x-1>0}\end{array}\right.$,解得$\frac{1}{3}<x<\frac{5}{12}$.
故不等式的解集为{x|$\frac{1}{3}<x<\frac{5}{12}$}.
点评 本题考查了抽象函数的性质,单调性的判断与应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 5$\sqrt{2}$ | B. | $\sqrt{46}$+$\sqrt{2}$ | C. | 2$\sqrt{15}$+$\sqrt{2}$ | D. | 6$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{\sqrt{3}}{2}$或$\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com