分析 (Ⅰ)由数列递推式可得$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n}{n-1}$,然后利用累积法求得数列通项公式;
(Ⅱ)把数列{an}的通项公式代入bn=$\frac{1}{({a}_{n}+1)^{2}}(n∈{N}^{+})$,然后利用裂项相消法求和,放缩得答案.
解答 (Ⅰ)解:当n=2时,2S2=3a2+1,解得a2=2,
当n=3时,2S3=4a3+1,解得a3=3.
当n≥3时,2Sn=(n+1)an+1,2Sn-1=nan-1+1,
以上两式相减,得2an=(n+1)an-nan-1,
∴$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n}{n-1}$,
∴${a}_{n}=\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}…\frac{{a}_{3}}{{a}_{2}}•{a}_{2}$=$\frac{n}{n-1}•\frac{n-1}{n-2}…\frac{3}{2}×2=n$,
∴${a}_{n}=\left\{\begin{array}{l}{\frac{3}{2},n=1}\\{n,n≥2}\end{array}\right.$;
(Ⅱ)证明:bn=$\frac{1}{({a}_{n}+1)^{2}}$=$\left\{\begin{array}{l}{\frac{4}{25},n=1}\\{\frac{1}{(n+1)^{2}},n≥2}\end{array}\right.$,
当n=1时,${T}_{1}={b}_{1}=\frac{4}{25}<\frac{33}{50}$,
当n≥2时,${b}_{n}=\frac{1}{(n+1)^{2}}<\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴${T}_{n}=\frac{4}{25}+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+$$(\frac{1}{n}-\frac{1}{n+1})=\frac{33}{50}-\frac{1}{n+1}<\frac{33}{50}$.
∴Tn<$\frac{33}{50}(n∈{N}^{+})$.
点评 本题考查数列递推式,考查了等比关系的确定,训练了裂项相消法求数列的前n项和,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,1) | B. | (-∞,-2)∪(1,+∞) | C. | (1,+∞) | D. | (-∞,-1)∪(0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{5}{2}$) | B. | ($\frac{5}{2}$,+∞) | C. | (-∞,-1) | D. | (6,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com