分析 (1)由条件$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}=\frac{{n}^{2}}{2}$,得n≥2时,$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n-1}}=\frac{(n-1)^{2}}{2}$,两式相减即可求得通项公式;
(2)${b}_{n}={a}_{n}{a}_{n+1}=\frac{4}{(2n-1)(2n+1)}$,采用裂项相消,即可求出{bn}的前n项和Sn.
解答 (本小题满分12分)
解析:(1)当n=1时,$\frac{1}{{a}_{1}}=\frac{1}{2}$,∴a1=2,
当n≥2时,$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}=\frac{{n}^{2}}{2}$,①
$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n-1}}=\frac{(n-1)^{2}}{2}$,②
①-②得,$\frac{1}{{a}_{n}}=\frac{{n}^{2}}{2}-\frac{(n-1)^{2}}{2}=\frac{2n-1}{2}$,
∴n≥2时,${a}_{n}=\frac{2}{2n-1}$.
又a1=2满足上式,
∴${a}_{n}=\frac{2}{2n-1}$.
(2)∵bn=anan+1=$\frac{2}{2n-1}•\frac{2}{2n+1}$=2($\frac{1}{2n-1}-\frac{1}{2n+1}$),
∴${S}_{n}=2(1-\frac{1}{3})+2(\frac{1}{3}-\frac{1}{5})+…+2(\frac{1}{2n-1}-\frac{1}{2n+1})$=2($1-\frac{1}{2n+1}$)=$\frac{4n}{2n+1}$.
点评 本题主要考查了利用数列的递推公式an=Sn-Sn-1求解数列的通项公式,以及裂项相消求数列的前n项.需注意的是在求通项公式时不要漏掉对n=1的检验.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com