分析 设BC=2x,BB1=2y,则4xy=16,利用直三棱柱ABC-A1B1C1中,∠BAC=90°,可得直三棱柱ABC-A1B1C1外接球的半径为$\sqrt{{x}^{2}+{y}^{2}}$$≥\sqrt{2xy}$=2,即可求出三棱柱ABC-A1B1C1外接球半径的最小值.
解答 解:设BC=2x,BB1=2y,则4xy=16,
∵直三棱柱ABC-A1B1C1中,∠BAC=90°,
∴直三棱柱ABC-A1B1C1外接球的半径为$\sqrt{{x}^{2}+{y}^{2}}$$≥\sqrt{2xy}$=2$\sqrt{2}$,
∴直三棱柱ABC-A1B1C1外接球半径的最小值为2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.
点评 本题考查三棱柱ABC-A1B1C1外接球半径的最小值,考查基本不等式的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{2}$个单位 | B. | 向右平移$\frac{π}{2}$个单位 | ||
| C. | 向左平移$\frac{π}{4}$个单位 | D. | 向右平移$\frac{π}{4}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com