精英家教网 > 高中数学 > 题目详情
已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
3
,直线l:y=x+2与以原点为圆心,椭圆C1的短半轴长为半径的圆相切.
(I)求椭圆C1的方程;
(II)直线l1过椭圆C1的左焦点F1,且与x轴垂直,动直线l2垂直于直线l2,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(III)设C2上的两个不同点R、S满足
OR
RS
=0
,求|
OS
|
的取值范围(O为坐标原点).
分析:(I)由离心率为
3
3
,可得2a2=3b2,利用直线l:y=x+2与圆x2+y2=b2相切,可求b的值,从而可得椭圆方程;
(II)由|MP|=|NF2|得动点M的轨迹是以直线x=-1为准线,以F2为焦点的抛物线,从而可得轨迹C2的方程;
(III)设出R,S的坐标,利用
OR
RS
=0
,可得纵坐标之间的关系,利用基本不等式确定S纵坐标的范围,进而可求|
OS
|的取值范围.
解答:解:(I)由离心率为
3
3
,得
a2-b2
a2
=
1
3
,∴2a2=3b2
∵直线l:y=x+2与圆x2+y2=b2相切,
2
2
=b

∴b=
2

∴a=
3

∴椭圆方程为
x2
3
+
y2
2
=1
            …(3分)
(II)由|MP|=|NF2|得动点M的轨迹是以直线x=-1为准线,以F2为焦点的抛物线.
∴轨迹C2的方程是y2=4x                         …(6分)
(III)设R(
y12
4
,y1),S(
y22
4
,y2),则
OR
=(
y12
4
,y1),
OS
=(
y22
4
,y2),
RS
=(
y22-y12
4
,y2-y1),
OR
RS
=0
,∴
y22-y12
4
×
y12
4
+y1(y2-y1)=0,
∵y2≠y1,∴y2=-(y1+
16
y1
),
y22=(y1+
16
y1
2=y12+
256
y12
+32≥64,当且仅当y12=
256
y12
,即y1=±4等号成立,…(9分)
∵|
OS
|=
1
4
(y22+8)2-64
y22≥64
∴当y22=64,即y2=±8时,|
OS
|取得最小值8
5

∴|
OS
|的取值范围是[8
5
,+∞)                       …(12分)
点评:本题考查椭圆的标准方程,考查抛物线方程,考查向量知识的运用,考查基本不等式,定型定量是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且|MF2|=
5
3

(1)求椭圆C1的方程;
(2)已知菱形ABCD的顶点A,C在椭圆C1上,对角线BD所在的直线的斜率为1.
①当直线BD过点(0,
1
7
)时,求直线AC的方程;
②当∠ABC=60°时,求菱形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的一条准线方程是x=
25
4
,其左、右顶点分别是A、B;双曲线C2
x2
a2
-
y2
b2
=1
的一条渐近线方程为3x-5y=0.
(1)求椭圆C1的方程及双曲线C2的离心率;
(2)在第一象限内取双曲线C2上一点P,连接AP交椭圆C1于点M,连接PB并延长交椭圆C1于点N,若
AM
=
MP
.求
MN
AB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,直线l:y=x+2
2
与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)与双曲线C2:x2-
y2
4
=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则b2=
0.5
0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,右顶点为A,离心率e=
1
2

(1)设抛物线C2:y2=4x的准线与x轴交于F1,求椭圆的方程;
(2)设已知双曲线C3以椭圆C1的焦点为顶点,顶点为焦点,b是双曲线C3在第一象限上任意-点,问是否存在常数λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案