【题目】如图,在四边形中, .
(1)若△为等边三角形,且, 是的中点,求;
(2)若, , ,求.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x+1|+|2x﹣a|.
(1)若f(x)的最小值为2,求a的值;
(2)若f(x)≤|2x﹣4|的解集包含[﹣2,﹣1],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合.曲线 (t为参数),曲线C2的极坐标方程为ρ=ρcos2θ+8cosθ. (Ⅰ)将曲线C1 , C2分别化为普通方程、直角坐标方程,并说明表示什么曲线;
(Ⅱ)设F(1,0),曲线C1与曲线C2相交于不同的两点A,B,求|AF|+|BF|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接党的“十九大”胜利召开与响应国家交给的“提速降费”任务,某市移动公司欲提供新的资费套餐(资费包含手机月租费、手机拨打电话费与家庭宽带上网费)。其中一组套餐变更如下:
原方案资费
手机月租费 | 手机拨打电话 | 家庭宽带上网费(50M) |
18元/月 | 0.2元/分钟 | 50元/月 |
新方案资费
手机月租费 | 手机拨打电话 | 家庭宽带上网费(50M) |
58元/月 | 前100分钟免费, 超过部分元/分钟(>0.2) | 免费 |
(1)客户甲(只有一个手机号和一个家庭宽带上网号)欲从原方案改成新方案,设其每月手机通话时间为分钟(),费用原方案每月资费-新方案每月资费,写出关于的函数关系式;
(2)经过统计,移动公司发现,选这组套餐的客户平均月通话时间分钟,为能起到降费作用,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标是ρ=2asinθ,直线l的参数方程是 (t为参数).
(1)若a=2,M为直线l与x轴的交点,N是圆C上一动点,求|MN|的最大值;
(2)若直线l被圆C截得的弦长为 ,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数定义在上且满足下列两个条件:
①对任意都有;
②当时,有,
(1)求,并证明函数在上是奇函数;
(2)验证函数是否满足这些条件;
(3)若,试求函数的零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:经过定点P0(x0 , y0)的直线都可以用方程y﹣y0=k(x﹣x0)表示,命题q:直线xtan +y﹣7=0的倾斜角是 ,则下列命题是真命题的为( )
A.(p)∧q
B.p∧q
C.p∨(q)
D.(P)∧(q)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+a2(a、b∈R)
(1)若函数f(x)在x=1处有极值为10,求b的值;
(2)若a=﹣4,f(x)在x∈[0,2]上单调递增,求b的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com