精英家教网 > 高中数学 > 题目详情

【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标是ρ=2asinθ,直线l的参数方程是 (t为参数).
(1)若a=2,M为直线l与x轴的交点,N是圆C上一动点,求|MN|的最大值;
(2)若直线l被圆C截得的弦长为 ,求a的值.

【答案】
(1)解:直线l的参数方程是 ,a=2时,化为普通方程: (x﹣2).令y=0,解得x=2,可得M(2,0).圆C的极坐标是ρ=2asinθ,即ρ2=4ρsinθ,可得直角坐标方程:x2+y2﹣4y=0,即x2+(y﹣2)2=4.

|MC|=2 ,∴|MN|的最大值为2 +2


(2)解:圆C的方程为:x2+(y﹣a)2=a2,直线l的方程为:4x+3y﹣4a=0,

圆心C到直线l的距离d= =

=2 ,解得a=


【解析】(1)直线l的参数方程是 ,a=2时,化为普通方程: (x﹣2).可得M(2,0).圆C的极坐标是ρ=2asinθ,即ρ2=4ρsinθ,利用互化公式可得直角坐标方程,求出|MC|=2 ,可得|MN|的最大值为2 +r.(2)圆C的方程为:x2+(y﹣a)2=a2,直线l的方程为:4x+3y﹣4a=0,利用点到直线的距离公式与弦长公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1点E,F,G分别是DD1 , AB,CC1的中点,则异面直线A1E与GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:

收入x(万元)

8.2

8.6

10.0

11.3

11.9

支出y(万元)

6.2

7.5

8.0

8.5

9.8

根据上表可得回归直线方程 ,其中 = ,据此估计,该社区一户居民年收入为15万元家庭的年支出为万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读与探究

人教A版《普通高中课程标准实验教科书 数学4(必修)》在第一章的小结中写到:

将角放在直角坐标系中讨论不但使角的表示有了统一的方法,而且使我们能够借助直角坐标系中的单位圆,建立角的变化与单位圆上点的变化之间的对应关系,从而用单位圆上点的纵坐标、横坐标来表示圆心角的正弦函数、余弦函数.因此,正弦函数、余弦函数的基本性质与圆的几何性质(主要是对称性)之间存在着非常紧密的联系.例如,和单位圆相关的“勾股定理”与同角三角函数的基本关系有内在的一致性;单位圆周长为与正弦函数、余弦函数的周期为是一致的;圆的各种对称性与三角函数的奇偶性、诱导公式等也是一致的等等.因此,三角函数的研究过程能够很好地体现数形结合思想.

依据上述材料,利用正切线可以讨论研究得出正切函数的性质.

比如:由图1.2-7可知,角的终边落在四个象限时均存在正切线;角的终边落在轴上时,其正切线缩为一个点,值为;角的终边落在轴上时,其正切线不存在;所以正切函数的定义域是.

(1)请利用单位圆中的正切线研究得出正切函数的单调性和奇偶性;

(2)根据阅读材料中途1.2-7,若角为锐角,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形中,

1)若为等边三角形,且 的中点,求

2)若 ,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足,且.当时, .

(1)求上的解析式;

(2)证明上是减函数;

(3)当取何值时,方程上有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.
(Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:B1F∥平面A1BE;
(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点(0,1)的直线与圆x2+y2=4相交于A、B两点,若 ,则点P的轨迹方程是( )
A.
B.x2+(y﹣1)2=1
C.
D.x2+(y﹣1)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A是抛物线M:y2=2px(p>0)与圆C:x2+(y﹣4)2=a2在第一象限的公共点,且点A到抛物线M焦点F的距离为a,若抛物线M上一动点到其准线与到点C的距离之和的最小值为2a,O为坐标原点,则直线OA被圆C所截得的弦长为( )
A.2
B.2
C.
D.

查看答案和解析>>

同步练习册答案