精英家教网 > 高中数学 > 题目详情
4.己知cosα=$\frac{1}{5}$,求sin(π-α)•cos(2π+α)•tan(π+α)•cos(2π-α)的值.

分析 直接利用利用诱导公式化简所求的表达式,结合同角三角函数的基本关系式求解即可.

解答 解:cosα=$\frac{1}{5}$,
sin(π-α)•cos(2π+α)•tan(π+α)•cos(2π-α)
=sinα•cosα•tanα•cosα
=sin2α•cosα
=(1-cos2α)cosα
=(1-$\frac{1}{25}$)×$\frac{1}{5}$
=$\frac{24}{125}$.

点评 本题考查诱导公式的应用,三角函数的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x),若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数f(x)的局部对称点.
(1)若a,b,c∈R,证明函数f(x)=ax3+bx2+cx-b必有局部对称点;
(2)是否存在常数m,使得函数f(x)=4x-m2x+1+m2-3有局部对称点?若存在,求出m的范围,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和Sn=2n2+2n.
(1)求数列{an}.
(2)设cn=$\frac{16}{{a}_{n}•{a}_{n+1}}$,求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=($\frac{1}{2}$)-x的单调增区间是R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知4a2-4a-15≤0,化简$\sqrt{4{a}^{2}+12a+9}$+$\sqrt{4{a}^{2}-20a+25}$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果$\sqrt{x+\sqrt{2}}$+|y-1|=0,则|$\frac{1}{x+y}$|=(  )
A.1-$\sqrt{2}$B.1+$\sqrt{2}$C.$\sqrt{2}$-1D.-$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设关于x的不等式x2+(a-1)x+a+2≤0的解集为A.
(1)若a=8,求A;
(2)若A≠∅,求实数a的取值范围;
(3)若“x∈A”是“x∈[1.2]”的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:
(1)a${\;}^{\frac{1}{2}}$•a${\;}^{\frac{1}{3}}$•a${\;}^{\frac{1}{4}}$
(2)$\frac{\root{3}{3}•\root{4}{3}•\root{3}{81}}{\root{5}{27}}$
(3)log25+log23-log2$\frac{15}{2}$
(4)2lg2+lg25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=2x2-1,f(a)=7,则a=±2.

查看答案和解析>>

同步练习册答案