精英家教网 > 高中数学 > 题目详情
14.已知正三角形ABC的边长为2$\sqrt{3}$,平面ABC内的动点P,M满足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,则|$\overrightarrow{BM}$|2的最大值是(  )
A.$\frac{43}{4}$B.$\frac{49}{4}$C.$\frac{37+6\sqrt{3}}{4}$D.$\frac{37+2\sqrt{33}}{4}$

分析 如图所示,建立直角坐标系.B(0,0),C$(2\sqrt{3},0)$.A$(\sqrt{3},3)$.点P的轨迹方程为:$(x-\sqrt{3})^{2}+(y-3)^{2}$=1,令x=$\sqrt{3}$+cosθ,y=3+sinθ,θ∈[0,2π).又$\overrightarrow{PM}$=$\overrightarrow{MC}$,可得M$(\frac{3}{2}\sqrt{3}+\frac{1}{2}cosθ,\frac{3}{2}+\frac{1}{2}sinθ)$,代入|$\overrightarrow{BM}$|2=$\frac{37}{4}$+3sin$(θ+\frac{π}{3})$,即可得出.

解答 解:如图所示,建立直角坐标系.
B(0,0),C$(2\sqrt{3},0)$.
A$(\sqrt{3},3)$.
∵M满足|$\overrightarrow{AP}$|=1,
∴点P的轨迹方程为:$(x-\sqrt{3})^{2}+(y-3)^{2}$=1,
令x=$\sqrt{3}$+cosθ,y=3+sinθ,θ∈[0,2π).
又$\overrightarrow{PM}$=$\overrightarrow{MC}$,则M$(\frac{3}{2}\sqrt{3}+\frac{1}{2}cosθ,\frac{3}{2}+\frac{1}{2}sinθ)$,
∴|$\overrightarrow{BM}$|2=$(\frac{3\sqrt{3}}{2}+\frac{1}{2}cosθ)^{2}$+$(\frac{3}{2}+\frac{1}{2}sinθ)^{2}$=$\frac{37}{4}$+3sin$(θ+\frac{π}{3})$≤$\frac{49}{4}$.
∴|$\overrightarrow{BM}$|2的最大值是$\frac{49}{4}$.
也可以以点A为坐标原点建立坐标系.
故选:B.

点评 本题考查了数量积运算性质、圆的参数方程、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤a}\\{-2x,x>a}\end{array}\right.$.
①若a=0,则f(x)的最大值为2;
②若f(x)无最大值,则实数a的取值范围是(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若变量x,y满足$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,则x2+y2的最大值是(  )
A.4B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.为了得到函数y=sin(x+$\frac{π}{3}$)的图象,只需把函数y=sinx的图象上所有的点(  )
A.向左平行移动$\frac{π}{3}$个单位长度B.向右平行移动$\frac{π}{3}$个单位长度
C.向上平行移动$\frac{π}{3}$个单位长度D.向下平行移动$\frac{π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′($\frac{y}{{x}^{2}+{y}^{2}}$,$\frac{-x}{{x}^{2}+{y}^{2}}$),当P是原点时,定义“伴随点”为它自身,现有下列命题:
?①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A.
?②单元圆上的“伴随点”还在单位圆上.
?③若两点关于x轴对称,则他们的“伴随点”关于y轴对称
④若三点在同一条直线上,则他们的“伴随点”一定共线.
其中的真命题是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为(  )
A.9B.18C.20D.35

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为
2m3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若z=1+2i,则$\frac{4i}{z\overline{z}-1}$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

同步练习册答案