精英家教网 > 高中数学 > 题目详情
2.如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.

分析 依题意,知∠BDC=90°,∠EDC=∠C,利用∠C+∠DBC=∠ABD+∠DBC=90°,可得∠ABD=∠C,从而可证得结论.

解答 解:由BD⊥AC可得∠BDC=90°,
因为E为BC的中点,所以DE=CE=$\frac{1}{2}$BC,
则:∠EDC=∠C,
由∠BDC=90°,可得∠C+∠DBC=90°,
由∠ABC=90°,可得∠ABD+∠DBC=90°,
因此∠ABD=∠C,而∠EDC=∠C,
所以,∠EDC=∠ABD.

点评 本题考查三角形的性质应用,利用∠C+∠DBC=∠ABD+∠DBC=90°,证得∠ABD=∠C是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(x+1)lnx-a(x-1).
(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;
(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知θ是第四象限角,且sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,则tan(θ-$\frac{π}{4}$)=$-\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是(  )
A.y=sinxB.y=lnxC.y=exD.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.
(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;
(Ⅱ)已知EF=FB=$\frac{1}{2}$AC=2$\sqrt{3}$,AB=BC,求二面角F-BC-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正三角形ABC的边长为2$\sqrt{3}$,平面ABC内的动点P,M满足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,则|$\overrightarrow{BM}$|2的最大值是(  )
A.$\frac{43}{4}$B.$\frac{49}{4}$C.$\frac{37+6\sqrt{3}}{4}$D.$\frac{37+2\sqrt{33}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|$\frac{x+2}{3-x}$>0},B={x||x+1|>3},D={x|x2-4ax+3a2<0,a∈R}.
(1)若1∈∁RD,求实数a的取值范围;
(2)若D?A∩B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案