精英家教网 > 高中数学 > 题目详情
10.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是(  )
A.y=sinxB.y=lnxC.y=exD.y=x3

分析 若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为-1,进而可得答案.

解答 解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,
则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为-1,
当y=sinx时,y′=cosx,满足条件;
当y=lnx时,y′=$\frac{1}{x}$>0恒成立,不满足条件;
当y=ex时,y′=ex>0恒成立,不满足条件;
当y=x3时,y′=3x2>0恒成立,不满足条件;
故选:A

点评 本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(Ⅱ)直线l的参数方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),l与C交与A,B两点,|AB|=$\sqrt{10}$,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.
(Ⅰ)求$\frac{{|{OH}|}}{{|{ON}|}}$;
(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若变量x,y满足$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,则x2+y2的最大值是(  )
A.4B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{|x|,x≤m}\\{{x}^{2}-2mx+4m,x>m}\end{array}\right.$,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′($\frac{y}{{x}^{2}+{y}^{2}}$,$\frac{-x}{{x}^{2}+{y}^{2}}$),当P是原点时,定义“伴随点”为它自身,现有下列命题:
?①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A.
?②单元圆上的“伴随点”还在单位圆上.
?③若两点关于x轴对称,则他们的“伴随点”关于y轴对称
④若三点在同一条直线上,则他们的“伴随点”一定共线.
其中的真命题是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点O(0,0),A(-1,2),B(2,4),$\overrightarrow{OP}$=$\overrightarrow{OA}$+t$\overrightarrow{AB}$,当点P在第二象限时,实数t的取值范围是(-1,$\frac{1}{3}$).

查看答案和解析>>

同步练习册答案