| A. | y=sinx | B. | y=lnx | C. | y=ex | D. | y=x3 |
分析 若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为-1,进而可得答案.
解答 解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,
则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为-1,
当y=sinx时,y′=cosx,满足条件;
当y=lnx时,y′=$\frac{1}{x}$>0恒成立,不满足条件;
当y=ex时,y′=ex>0恒成立,不满足条件;
当y=x3时,y′=3x2>0恒成立,不满足条件;
故选:A
点评 本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com