精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=(x+1)lnx-a(x-1).
(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;
(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.

分析 (I)当a=4时,求出曲线y=f(x)在(1,f(1))处的切线的斜率,即可求出切线方程;
(II)先求出f′(x)>f′(1)=2-a,再结合条件,分类讨论,即可求a的取值范围.

解答 解:(I)当a=4时,f(x)=(x+1)lnx-4(x-1).
f(1)=0,即点为(1,0),
函数的导数f′(x)=lnx+(x+1)•$\frac{1}{x}$-4,
则f′(1)=ln1+2-4=2-4=-2,
即函数的切线斜率k=f′(1)=-2,
则曲线y=f(x)在(1,0)处的切线方程为y=-2(x-1)=-2x+2;
(II)∵f(x)=(x+1)lnx-a(x-1),
∴f′(x)=1+$\frac{1}{x}$+lnx-a,
∴f″(x)=$\frac{x-1}{{x}^{2}}$,
∵x>1,∴f″(x)>0,
∴f′(x)在(1,+∞)上单调递增,
∴f′(x)>f′(1)=2-a.
①a≤2,f′(x)>f′(1)≥0,
∴f(x)在(1,+∞)上单调递增,
∴f(x)>f(1)=0,满足题意;
②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,
由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.
综上所述,a≤2.

点评 本题主要考查了导数的应用,函数的导数与函数的单调性的关系的应用,导数的几何意义,考查参数范围的求解,考查学生分析解决问题的能力,有难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.命题“?x∈R,使得x2>1”的否定是(  )
A.?x∈R,都有x2>1B.?x∈R,都有-1≤x≤1C.?x∈R,使得-1≤x≤1D.?x∈R,使得x2>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x+1|-|2x-3|.
(Ⅰ)在图中画出y=f(x)的图象;
(Ⅱ)求不等式|f(x)|>1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(Ⅱ)直线l的参数方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),l与C交与A,B两点,|AB|=$\sqrt{10}$,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设F为抛物线C:y2=4x的焦点,曲线y=$\frac{k}{x}$(k>0)与C交于点P,PF⊥x轴,则k=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x,y∈R,且x>y>0,则(  )
A.$\frac{1}{x}$-$\frac{1}{y}$>0B.sinx-siny>0C.($\frac{1}{2}$)x-($\frac{1}{2}$)y<0D.lnx+lny>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤a}\\{-2x,x>a}\end{array}\right.$.
①若a=0,则f(x)的最大值为2;
②若f(x)无最大值,则实数a的取值范围是(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.

查看答案和解析>>

同步练习册答案