| A. | $\frac{1}{x}$-$\frac{1}{y}$>0 | B. | sinx-siny>0 | C. | ($\frac{1}{2}$)x-($\frac{1}{2}$)y<0 | D. | lnx+lny>0 |
分析 x,y∈R,且x>y>0,可得:$\frac{1}{x}<$$\frac{1}{y}$,sinx与siny的大小关系不确定,$(\frac{1}{2})^{x}$<$(\frac{1}{2})^{y}$,lnx+lny与0的大小关系不确定,即可判断出结论.
解答 解:∵x,y∈R,且x>y>0,则$\frac{1}{x}<$$\frac{1}{y}$,sinx与siny的大小关系不确定,$(\frac{1}{2})^{x}$<$(\frac{1}{2})^{y}$,即$(\frac{1}{2})^{x}$-$(\frac{1}{2})^{y}$<0,lnx+lny与0的大小关系不确定.
故选:C.
点评 本题考查了不等式的性质、函数的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{kπ}{2}$-$\frac{π}{6}$(k∈Z) | B. | x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z) | C. | x=$\frac{kπ}{2}$-$\frac{π}{12}$(k∈Z) | D. | x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2sin(2x-$\frac{π}{6}$) | B. | y=2sin(2x-$\frac{π}{3}$) | C. | y=2sin(x+$\frac{π}{6}$) | D. | y=2sin(x+$\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com