精英家教网 > 高中数学 > 题目详情
7.已知点M(1,0),A,B是椭圆$\frac{{x}^{2}}{4}$+y2=1上的动点,且$\overrightarrow{MA}•\overrightarrow{MB}$=0,则$\overrightarrow{MA}•\overrightarrow{BA}$的取值范围是[$\frac{2}{3}$,9].

分析 利用$\overrightarrow{MA}•\overrightarrow{MB}$=0,可得$\overrightarrow{MA}•\overrightarrow{BA}$=$\overrightarrow{MA}•(\overrightarrow{MA}-\overrightarrow{MB})$=${\overrightarrow{MA}}^{2}$,设A(2cosα,sinα),可得${\overrightarrow{MA}}^{2}$=(2cosα-1)2+sin2α=3cos2α-4cosα+2=3(cosα-$\frac{2}{3}$)2+$\frac{2}{3}$,即可求出$\overrightarrow{MA}•\overrightarrow{BA}$的取值范围.

解答 解:∵$\overrightarrow{MA}•\overrightarrow{MB}$=0,
∴$\overrightarrow{MA}•\overrightarrow{BA}$=$\overrightarrow{MA}•(\overrightarrow{MA}-\overrightarrow{MB})$=${\overrightarrow{MA}}^{2}$,
设A(2cosα,sinα),则${\overrightarrow{MA}}^{2}$=(2cosα-1)2+sin2α=3cos2α-4cosα+2=3(cosα-$\frac{2}{3}$)2+$\frac{2}{3}$,
∴cosα=$\frac{2}{3}$时,${\overrightarrow{MA}}^{2}$的最小值为$\frac{2}{3}$;cosα=-1时,${\overrightarrow{MA}}^{2}$的最大值为9,
故答案为:[$\frac{2}{3}$,9].

点评 本题考查椭圆方程,考查向量的数量积运算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知等腰△ABC中,∠C=90°,A(-1,0),B(3,2),则点C的坐标为(  )
A.(3,-3)B.(0,3)或(3,-3)C.(2,-1)D.(0,3)或(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$\frac{1+2i}{2-i}$=(  )
A.iB.1+iC.-iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,直线y=x与椭圆C交于点E,F,直线y=-x与椭圆C交于点G,H,且四边形EHFG的面积为$\frac{16}{5}$.
(1)求椭圆C的方程;
(2)过椭圆C的左顶点A作直线l1交椭圆C于另一点P,过点A作垂直于l1的直线l1,l2交椭圆C于另一点Q,当直线l1的斜率变化时,直线PQ是否过x轴上的一定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题“?x∈R,使得x2>1”的否定是(  )
A.?x∈R,都有x2>1B.?x∈R,都有-1≤x≤1C.?x∈R,使得-1≤x≤1D.?x∈R,使得x2>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c=$\sqrt{7}$,△ABC的面积为$\frac{3\sqrt{3}}{2}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x,y∈R,且x>y>0,则(  )
A.$\frac{1}{x}$-$\frac{1}{y}$>0B.sinx-siny>0C.($\frac{1}{2}$)x-($\frac{1}{2}$)y<0D.lnx+lny>0

查看答案和解析>>

同步练习册答案