精英家教网 > 高中数学 > 题目详情
13.复数$\frac{1+2i}{2-i}$=(  )
A.iB.1+iC.-iD.1-i

分析 将分子分线同乘2+i,整理可得答案.

解答 解:$\frac{1+2i}{2-i}$=$\frac{(1+2i)(2+i)}{(2-i)(2+i)}$=$\frac{5i}{5}$=i,
故选:A

点评 本题考查的知识点是复数代数形式的加减运算,共轭复数的定义,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.cos45°cos(-15°)+sin225°sin195°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简:$\frac{{sin}^{2}(α-π)cos(π+α)sin(\frac{3π}{2}-α)}{tan(2π+α{)cos}^{3}(α-π)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.Sn为等差数列{an}的前n项和,且a1=1,S7=28,记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.
(Ⅰ)求b1,b11,b101
(Ⅱ)求数列{bn}的前1000项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=(  )
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.椭圆$\frac{x^2}{4}$+y2=1的焦距为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}}$)图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),再向右平移$\frac{π}{6}$个单位长度得到y=cosx的图象,则函数f(x)的单调递增区间为(  )
A.[kπ-$\frac{2π}{3}$,kπ+$\frac{π}{3}}$](k∈Z)B.[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}}$](k∈Z)
C.[4kπ-$\frac{7π}{3}$,kπ-$\frac{π}{3}}$](k∈Z)D.[4kπ-$\frac{π}{3}$,kπ+$\frac{5π}{3}}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点M(1,0),A,B是椭圆$\frac{{x}^{2}}{4}$+y2=1上的动点,且$\overrightarrow{MA}•\overrightarrow{MB}$=0,则$\overrightarrow{MA}•\overrightarrow{BA}$的取值范围是[$\frac{2}{3}$,9].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若将函数y=2sin2x的图象向左平移$\frac{π}{12}$个单位长度,则平移后的图象的对称轴为(  )
A.x=$\frac{kπ}{2}$-$\frac{π}{6}$(k∈Z)B.x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z)C.x=$\frac{kπ}{2}$-$\frac{π}{12}$(k∈Z)D.x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z)

查看答案和解析>>

同步练习册答案