| A. | [kπ-$\frac{2π}{3}$,kπ+$\frac{π}{3}}$](k∈Z) | B. | [kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}}$](k∈Z) | ||
| C. | [4kπ-$\frac{7π}{3}$,kπ-$\frac{π}{3}}$](k∈Z) | D. | [4kπ-$\frac{π}{3}$,kπ+$\frac{5π}{3}}$](k∈Z) |
分析 利用函数y=Asin(ωx+φ)的图象变换规律,求得f(x)的解析式,再利用余弦函数的单调性,求得函数f(x)的单调递增区间.
解答 解:将函数f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}}$)图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),
可得y=cos($\frac{1}{2}$ωx+φ)图象;再向右平移$\frac{π}{6}$个单位长度,得到 y=cos[$\frac{1}{2}$ω(x-$\frac{π}{6}$)+φ]=cos($\frac{1}{2}$ωx-$\frac{π}{12}$•ω+φ)的图象,
而由已知可得,得到的是函数y=cosx的图象,∴$\frac{ω}{2}$=1,∴ω=2;
再根据-$\frac{π}{12}$•2+φ=2kπ,k∈Z,∴φ=$\frac{π}{6}$,f(x)=cos(2x+$\frac{π}{6}$).
令2kπ-π≤2x+$\frac{π}{6}$≤2kπ,求得kπ-$\frac{7π}{12}$≤x≤kπ-$\frac{π}{12}}$,k∈Z,
则函数f(x)的单调递增区间为[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}}$],(k∈Z),
故选:B.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | 14 | C. | 13 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,都有x2>1 | B. | ?x∈R,都有-1≤x≤1 | C. | ?x∈R,使得-1≤x≤1 | D. | ?x∈R,使得x2>1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com