15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬Ö±Ïßy=xÓëÍÖÔ²C½»ÓÚµãE£¬F£¬Ö±Ïßy=-xÓëÍÖÔ²C½»ÓÚµãG£¬H£¬ÇÒËıßÐÎEHFGµÄÃæ»ýΪ$\frac{16}{5}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýÍÖÔ²CµÄ×ó¶¥µãA×÷Ö±Ïßl1½»ÍÖÔ²CÓÚÁíÒ»µãP£¬¹ýµãA×÷´¹Ö±ÓÚl1µÄÖ±Ïßl1£¬l2½»ÍÖÔ²CÓÚÁíÒ»µãQ£¬µ±Ö±Ïßl1µÄбÂʱ仯ʱ£¬Ö±ÏßPQÊÇ·ñ¹ýxÖáÉϵÄÒ»¶¨µã£¿Èô¹ý¶¨µã£¬Çó³ö¸Ã¶¨µãµÄ×ø±ê£¬Èô²»¹ý¶¨µã£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓÃÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬µÃ³öa=2b£¬Ö±Ïßy=x´úÈëÍÖÔ²C£¬¿ÉµÃ$\frac{{x}^{2}}{4{b}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¬x=$\frac{2\sqrt{5}}{5}$b£¬ÀûÓÃËıßÐÎEHFGµÄÃæ»ýΪ$\frac{16}{5}$£¬Çó³öb£¬¿ÉµÃa£¬¼´¿ÉÇóµÃÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl1µÄ·½³Ì´úÈëÍÖÔ²µÄ·½³Ì£¬ÏûÈ¥y£¬ÕûÀíµÃÒ»Ôª¶þ´Î·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬¿ÉÇóµÃPµÄ×ø±ê£¬ÒÔ-$\frac{1}{k}$´úÈ룬¿ÉµÃQ£¨$\frac{2{k}^{2}-8}{{k}^{2}+4}$£¬-$\frac{4k}{{k}^{2}+4}$£©£¬´Ó¶ø¿ÉÇóPQµÄÖ±Ïß·½³Ì£¬Áîy=0£¬¼´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬
¡à$\frac{c}{a}=\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{\sqrt{3}}{2}$£¬
¡àa=2b£¬
Ö±Ïßy=x´úÈëÍÖÔ²C£¬¿ÉµÃ$\frac{{x}^{2}}{4{b}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¬¡àx=$\frac{2\sqrt{5}}{5}$b£¬
¡ßÖ±Ïßy=xÓëÍÖÔ²C½»ÓÚµãE£¬F£¬Ö±Ïßy=-xÓëÍÖÔ²C½»ÓÚµãG£¬H£¬ÇÒËıßÐÎEHFGµÄÃæ»ýΪ$\frac{16}{5}$£¬
¡à£¨$\frac{4\sqrt{5}}{5}$b£©2=$\frac{16}{5}$£¬
¡àb=1£¬
¡àa=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£»
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ö±ÏßбÂÊΪk£¬ÔòÖ±Ïßl1µÄ·½³ÌΪy=k£¨x+2£©
°ÑËü´úÈëÍÖÔ²µÄ·½³Ì£¬ÏûÈ¥y£¬ÕûÀíµÃ£º£¨1+4k2£©x2+16k2x+£¨16k2-4£©=0
ÓÉΤ´ï¶¨ÀíµÃ-2+x1=-$\frac{16{k}^{2}}{1+4{k}^{2}}$£¬
¡àx1=$\frac{2-8{k}^{2}}{1+4{k}^{2}}$£¬
¡ày1=k£¨x1+2£©=$\frac{4k}{1+4{k}^{2}}$£¬¡àP£¨$\frac{2-8{k}^{2}}{1+4{k}^{2}}$£¬$\frac{4k}{1+4{k}^{2}}$£©£¬
ÒÔ-$\frac{1}{k}$´úÈ룬¿ÉµÃQ£¨$\frac{2{k}^{2}-8}{{k}^{2}+4}$£¬-$\frac{4k}{{k}^{2}+4}$£©£¬ÔòkPQ=-$\frac{5k}{4£¨{k}^{2}-1£©}$
¡àPQµÄÖ±Ïß·½³ÌΪy-$\frac{4k}{1+4{k}^{2}}$=-$\frac{5k}{4£¨{k}^{2}-1£©}$£¨x-$\frac{2-8{k}^{2}}{1+4{k}^{2}}$£©£¬
Áîy=0£¬Ôòx=$\frac{16k£¨{k}^{2}-1£©}{5k£¨1+4{k}^{2}£©}$+$\frac{2-8{k}^{2}}{1+4{k}^{2}}$=-$\frac{6}{5}$£®
¡àÖ±ÏßPQ¹ýxÖáÉϵÄÒ»¶¨µã£¨-$\frac{6}{5}$£¬0£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨ÀíµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬×ÛºÏÐÔÇ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª¦ÈÊǵÚÒ»ÏóÏ޵Ľǣ¬Èôsin4¦È+cos4¦È=$\frac{5}{9}$£¬Ôòsin2¦ÈµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{4}{3}$B£®$-\frac{2}{3}$C£®$\frac{{2\sqrt{2}}}{3}$D£®$-\frac{{2\sqrt{2}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®SnΪµÈ²îÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇÒa1=1£¬S7=28£¬¼Çbn=[lgan]£¬ÆäÖÐ[x]±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£¬Èç[0.9]=0£¬[lg99]=1£®
£¨¢ñ£©Çób1£¬b11£¬b101£»
£¨¢ò£©ÇóÊýÁÐ{bn}µÄǰ1000ÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÍÖÔ²$\frac{x^2}{4}$+y2=1µÄ½¹¾àΪ2$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®½«º¯Êýf£¨x£©=cos£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬-$\frac{¦Ð}{2}$£¼¦Õ£¼$\frac{¦Ð}{2}}$£©Í¼ÏóÉÏÿһµãµÄºá×ø±êÉ쳤ΪԭÀ´µÄ2±¶£¨×Ý×ø±ê²»±ä£©£¬ÔÙÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶ÈµÃµ½y=cosxµÄͼÏó£¬Ôòº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£¨¡¡¡¡£©
A£®[k¦Ð-$\frac{2¦Ð}{3}$£¬k¦Ð+$\frac{¦Ð}{3}}$]£¨k¡ÊZ£©B£®[k¦Ð-$\frac{7¦Ð}{12}$£¬k¦Ð-$\frac{¦Ð}{12}}$]£¨k¡ÊZ£©
C£®[4k¦Ð-$\frac{7¦Ð}{3}$£¬k¦Ð-$\frac{¦Ð}{3}}$]£¨k¡ÊZ£©D£®[4k¦Ð-$\frac{¦Ð}{3}$£¬k¦Ð+$\frac{5¦Ð}{3}}$]£¨k¡ÊZ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁе÷²é£º
¢Ùÿ¸ô5Äê½øÐÐÈË¿ÚÆÕ²é£»
¢Ú±¨Éç½øÐÐÓßÂÛµ÷²é£»
¢ÛµÆÅÝʹÓÃÊÙÃüµÄµ÷²é£»
¢Ü¶ÔÈëѧ±¨ÃûÕßµÄѧÀú¼ì²é£»
¢Ý´Ó20̨µçÊÓ»úÖгé³ö3̨½øÐÐÖÊÁ¿¼ì²é£¬
ÆäÖÐÊʺÏÓóéÑùµ÷²éµÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÛB£®¢Ú¢Û¢ÝC£®¢Ú¢Û¢ÜD£®¢Ù¢Û¢Ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªµãM£¨1£¬0£©£¬A£¬BÊÇÍÖÔ²$\frac{{x}^{2}}{4}$+y2=1Éϵ͝µã£¬ÇÒ$\overrightarrow{MA}•\overrightarrow{MB}$=0£¬Ôò$\overrightarrow{MA}•\overrightarrow{BA}$µÄȡֵ·¶Î§ÊÇ[$\frac{2}{3}$£¬9]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚÈñ½ÇÈý½ÇÐÎABCÖУ¬ÈôsinA=2sinBsinC£¬ÔòtanAtanBtanCµÄ×îСֵÊÇ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êýy=Asin£¨¦Øx+¦Õ£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôò£¨¡¡¡¡£©
A£®y=2sin£¨2x-$\frac{¦Ð}{6}$£©B£®y=2sin£¨2x-$\frac{¦Ð}{3}$£©C£®y=2sin£¨x+$\frac{¦Ð}{6}$£©D£®y=2sin£¨x+$\frac{¦Ð}{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸