精英家教网 > 高中数学 > 题目详情
1.Sn为等差数列{an}的前n项和,且a1=1,S7=28,记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.
(Ⅰ)求b1,b11,b101
(Ⅱ)求数列{bn}的前1000项和.

分析 (Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解b1,b11,b101
(Ⅱ)找出数列的规律,然后求数列{bn}的前1000项和.

解答 解:(Ⅰ)Sn为等差数列{an}的前n项和,且a1=1,S7=28,7a4=28.
可得a4=4,则公差d=1.
an=n,
bn=[lgn],则b1=[lg1]=0,
b11=[lg11]=1,
b101=[lg101]=2.
(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.
b100=b101=b102=b103=…=b999=2,b10,00=3.
数列{bn}的前1000项和为:9×0+90×1+900×2+3=1893.

点评 本题考查数列的性质,数列求和,考查分析问题解决问题的能力,以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.计算不定积分${∫}_{\;}^{\;}$x$\sqrt{x•\root{3}{{x}^{2}\sqrt{x}}}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等腰△ABC中,∠C=90°,A(-1,0),B(3,2),则点C的坐标为(  )
A.(3,-3)B.(0,3)或(3,-3)C.(2,-1)D.(0,3)或(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知方程$\frac{x^2}{m^2+n}$-$\frac{y^2}{3m^2-n}$=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(  )
A.(-1,3)B.(-1,$\sqrt{3}$)C.(0,3)D.(0,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{x-3≤0}\end{array}\right.$,则z=x-2y的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$\frac{1+2i}{2-i}$=(  )
A.iB.1+iC.-iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,直线y=x与椭圆C交于点E,F,直线y=-x与椭圆C交于点G,H,且四边形EHFG的面积为$\frac{16}{5}$.
(1)求椭圆C的方程;
(2)过椭圆C的左顶点A作直线l1交椭圆C于另一点P,过点A作垂直于l1的直线l1,l2交椭圆C于另一点Q,当直线l1的斜率变化时,直线PQ是否过x轴上的一定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c=$\sqrt{7}$,△ABC的面积为$\frac{3\sqrt{3}}{2}$,求△ABC的周长.

查看答案和解析>>

同步练习册答案