精英家教网 > 高中数学 > 题目详情
9.在△ABC中,已知a=1,c=2,B=30°,则S△ABC=(  )
A.1B.$\frac{1}{2}$C.2D.$\frac{1}{4}$

分析 利用三角形面积公式即可计算得解.

解答 解:∵a=1,c=2,B=30°,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×1×2×sin30°$=$\frac{1}{2}$.
故选:B.

点评 本题主要考查了三角形面积公式,特殊角的三角函数值的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.当函数y=sinx-$\sqrt{3}$cosx(0≤x≤2π)取最大值时,x=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.m为何实数时,关于x的一元二次方程mx2-(1-x)+m=0,
(1)有两个不相等的实数根;
(2)有两个不相等的正实根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),F1、F2分别为它的左、右焦点,过焦点且垂直于X轴的弦长为3,且两焦点与短轴一端点构成等边三角形.
(1)求椭圆C的方程;
(2)问是否存在过椭圆焦点F2的弦PQ,使得|PF1|,|PQ|,|QF1|成等差数列,若存在,求出PQ所在直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.
(Ⅰ)求证:平面EDB⊥平面EBC;
(理科生做)(Ⅱ)求二面角E-DB-C的正切值;
(文科生做)(Ⅱ)求点A到平面DBE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,B=30°,C=45°,则$\frac{a+c}{b}$=$\frac{\sqrt{6}+3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足a1=2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N*),则连乘积a1a2a3…a2009a2010的值为(  )
A.-6B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=9,则此梯形的中位线长是(  )
A.10B.$\frac{21}{2}$C.$\frac{15}{2}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,$\overrightarrow{AD}=\frac{1}{4}\overrightarrow{AB}$,DE∥BC,且与边AC相交于点E,△ABC的中线AM与DE相交于点N,设$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}$=$\overrightarrow b$,用$\overrightarrow a,\overrightarrow b$表示向量$\overrightarrow{ME}$=$-\frac{1}{2}\overrightarrow{a}-\frac{1}{4}\overrightarrow{b}$.

查看答案和解析>>

同步练习册答案