精英家教网 > 高中数学 > 题目详情
已知函数f(x)=10x,对于实数m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),则p的最大值等于
 
分析:由f(x)=10x得:f(m+n)=f(m)f(n),依题意,可求得f(m)f(n)=f(m)+f(n),令f(m)f(n)=f(m)+f(n)=t,则f(m)、f(n)是x2-tx+t=0的解,利用△=t2-4t≥0,可求得t的范围,进一步可求得f(p)=
t
t-1
=1+
1
t-1
(t≥4),利用该函数的单调性即可求得f(p)的最大值,继而可得p的最大值.
解答:解:由f(x)=10x得:f(m+n)=f(m)f(n),
∵f(m+n)=f(m)+f(n),
∴f(m)f(n)=f(m)+f(n),
设f(m)f(n)=f(m)+f(n)=t,
则f(m)、f(n)是x2-tx+t=0的解,
∵△=t2-4t≥0,
∴t≥4或t≤0(舍去).
又f(m+n+p)=f(m)f(n)f(p)=f(m)+f(n)+f(p),
∴tf(p)=t+f(p),
∴f(p)=
t
t-1
=1+
1
t-1
(t≥4),
显然t越大,f(p)越小,
∴当t=4时,f(p)取最大值
4
3
,又f(p)=10p
∴f(p)取到最大值时,p也取到最大值,即pmax=lg
4
3
=2lg2-lg3.
点评:本题考查抽象函数的性质,着重考查对数函数的性质,求得f(m)f(n)=f(m)+f(n)之后,设f(m)f(n)=f(m)+f(n)=t,构造方程,f(m)、f(n)是x2-tx+t=0的解是关键,也是难点,考查创新思维与综合分析与运算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案